Signals as Vectors
Systems as Maps

ELEC 3004: Systems: Signals & Controls
Dr. Surya Singh

Lecture 3

elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/

March 7, 2017

Tomorrow: UN International Women's Day 2017

• Ada Lovelace: English mathematician and writer
• Creator of the first algorithm and first computer program
Lecture Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>2-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>2</td>
<td>7-Mar</td>
<td>Systems as Maps & Signals as Vectors</td>
</tr>
<tr>
<td>3</td>
<td>9-Mar</td>
<td>Data Acquisition & Sampling</td>
</tr>
<tr>
<td>4</td>
<td>14-Mar</td>
<td>Sampling Theory</td>
</tr>
<tr>
<td>5</td>
<td>16-Mar</td>
<td>Antialiasing Filters</td>
</tr>
<tr>
<td>6</td>
<td>21-Mar</td>
<td>Discrete System Analysis</td>
</tr>
<tr>
<td>7</td>
<td>23-Mar</td>
<td>Convolution Review</td>
</tr>
<tr>
<td>8</td>
<td>28-Mar</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>9</td>
<td>30-Mar</td>
<td>Filter Analysis</td>
</tr>
<tr>
<td>10</td>
<td>4-Apr</td>
<td>Digital Filters (IIR)</td>
</tr>
<tr>
<td>11</td>
<td>6-Apr</td>
<td>Digital Windows</td>
</tr>
<tr>
<td>12</td>
<td>11-Apr</td>
<td>Digital Filter (FIR)</td>
</tr>
<tr>
<td>13</td>
<td>13-Apr</td>
<td>Holiday</td>
</tr>
<tr>
<td>14</td>
<td>18-Apr</td>
<td>Digital Filter (FIR)</td>
</tr>
<tr>
<td>15</td>
<td>25-Apr</td>
<td>Digital Windows</td>
</tr>
<tr>
<td>16</td>
<td>27-Apr</td>
<td>Active Filters & Estimation</td>
</tr>
<tr>
<td>17</td>
<td>2-May</td>
<td>Introduction to Feedback Control</td>
</tr>
<tr>
<td>18</td>
<td>4-May</td>
<td>Servocontrol/PID</td>
</tr>
<tr>
<td>19</td>
<td>9-May</td>
<td>Introduction to (Digital) Control</td>
</tr>
<tr>
<td>20</td>
<td>11-May</td>
<td>Digital Control</td>
</tr>
<tr>
<td>21</td>
<td>16-May</td>
<td>Digital Control Design</td>
</tr>
<tr>
<td>22</td>
<td>18-May</td>
<td>Stability</td>
</tr>
<tr>
<td>23</td>
<td>23-May</td>
<td>Digital Control Systems: Shaping the Dynamic Response</td>
</tr>
<tr>
<td>24</td>
<td>25-May</td>
<td>Applications in Industry</td>
</tr>
<tr>
<td>25</td>
<td>30-May</td>
<td>System Identification & Information Theory</td>
</tr>
<tr>
<td>26</td>
<td>7-Jun</td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>

Follow Along Reading:

- **Chapter 1:** *Introduction to Signals and Systems*
 - § 1.7 Classification of Systems

- **Chapter 3:** *Signal Representation By Fourier Series*
 - § 3.1 Signals and Vectors
 - § 3.3 Signal Representation by Orthogonal Signal Set
System Terminology

System Classifications/Attributes

1. Linear and nonlinear systems
2. Constant-parameter and time-varying-parameter systems
3. Instantaneous (memoryless) and dynamic (with memory) systems
4. Causal and noncausal systems
5. Continuous-time and discrete-time systems
6. Analog and digital systems
7. Invertible and noninvertible systems
8. Stable and unstable systems
Dynamical Systems...

- A system with a memory
 - Where past history (or derivative states) are **relevant** in determining the response
- Ex:
 - RC circuit: Dynamical
 - Clearly a function of the “capacitor’s past” (initial state) and
 - Time! (charge / discharge)
 - R circuit: is memoryless ∵ the output of the system
 (recall V=IR) at some time \(t \) only depends on the input at time \(t \)

- Lumped/Distributed
 - Lumped: Parameter is constant through the process & can be treated as a “point” in space
 - Distributed: System dimensions ≠ small over signal
 - Ex: waveguides, antennas, microwave tubes, etc.

Causality:
Causal (physical or nonanticipative) systems

- Is one for which the output at any instant \(t_0 \) depends only on the value of the input \(x(t) \) for \(t \leq t_0 \). Ex:
 \[
 u(t) = x(t-2) \Rightarrow \text{causal} \quad u(t) = x(t-2) + x(t+2) \Rightarrow \text{noncausal}
 \]
- A “real-time” system must be causals
 - How can it respond to future inputs?
- A prophetic system: knows future inputs and acts on it (now)
 - The output would begin before \(t_0 \)
- In some cases Noncausal maybe modelled as causal with delay
- Noncausal systems provide an upper bound on the performance of causal systems
Causality:
Looking at this from the output’s perspective...

- **Causal** = The output before some time t does not depend on the input after time t.

Given: $y(t) = F(u(t))$

For:

$\tilde{u}(t) = u(t), \forall 0 \leq t < T \text{ or } [0, T)$

Then for a $T > 0$:

$\rightarrow \tilde{y}(t) = y(t), \forall 0 \leq t < T$

Systems with Memory

- A system is said to have memory if the output at an arbitrary time $t = t_*$ depends on input values other than, or in addition to, $x(t_*)$

- Ex: Ohm’s Law

$$V(t_o) = Ri(t_o)$$

- **Not** Ex: Capacitor

$$V(t_0) = \frac{1}{C} \int_{-\infty}^{t} i(t) \, dt$$
Time-Invariant Systems

- **Given** a shift (delay or advance) in the input signal
- **Then/Causes** simply a like shift in the output signal

- If \(x(t) \) produces output \(y(t) \)
- Then \(x(t - t_0) \) produces output \(y(t - t_0) \)

- Ex: Capacitor
 - \(V(t_0) = \frac{1}{C} \int_{-\infty}^{t} i(\tau - t_0) \, d\tau \)
 - \(= \frac{1}{C} \int_{t_0}^{t} i(\tau) \, d\tau \)
 - \(= V(t - t_0) \)

![Diagram of time-invariant system](image-url)
Unit Step Function

- \(u(t) = \begin{cases}
0, & t < 0 \\
1, & t > 0
\end{cases} \)

“Rectangular Pulse”

- \(p(t) = u(t) - u(t - T) \)

Unit-Impulse Function

1. \(\delta(t) = 0 \) for \(t \neq 0 \).
2. \(\delta(t) \) undefined for \(t = 0 \).
3. \(\int_{t_1}^{t_2} \delta(t) \, dt = \begin{cases}
1, & \text{if } t_1 < 0 < t_2 \\
0, & \text{otherwise}
\end{cases} \)
EXAMPLE: First Order RC Filter

- Passive, First-Order Resistor-Capacitor Design:

\[
\begin{align*}
\text{(Low-pass configuration)} \\
\end{align*}
\]

- 3dB (½ Signal Power):
 \[
 \omega = 2\pi f
 \]
 \[
 f_c = \frac{1}{2\pi RC}
 \]

- Magnitude:
 \[
 |V_{\text{out}}| = \sqrt{\frac{1}{(\omega RC)^2}} |V_{\text{in}}|
 \]

- Phase:
 \[
 \phi = \tan^{-1} (-\omega RC')
 \]

Example 1: RC Circuits

\[
\begin{align*}
y(t) &= R f(t) + \frac{1}{C} \int_{-\infty}^{t} f(\tau) \, d\tau \\
y(t) &= R f(t) + \frac{1}{C} \int_{0}^{t} f(\tau) \, d\tau + \frac{1}{C} \int_{0}^{t} f(\tau) \, d\tau \\
y(t) &= v_C(0) + R f(t) + \frac{1}{C} \int_{0}^{t} f(\tau) \, d\tau \\
y(t) &= v_C(t_0) + R f(t) + \frac{1}{C} \int_{t_0}^{t} f(\tau) \, d\tau
\end{align*}
\]
BREAK

Signals as Vectors
Complex Exponential Signals

\[x(t) = A e^{\lambda t} \]

- \(A \) and \(\lambda \) are generally complex numbers.

- If \(A \) and \(\lambda \) are, in fact, real-valued numbers, \(x(t) \) is itself real-valued and is called a real exponential.

![Diagram](image)

Signals as Vectors

- Back to the beginning!
There is a perfect analogy between signals and vectors …

Signals are vectors!

A vector can be represented as a sum of its components in a variety of ways, depending upon the choice of coordinate system. A signal can also be represented as a sum of its components in a variety of ways.

Represent them as Column Vectors

\[x = \begin{bmatrix}
 x[1] \\
 x[2] \\
 x[3] \\
 \vdots \\
 x[N]
\end{bmatrix}. \]
Signals as Vectors

• Can represent phenomena of interest in terms of signals

• Natural vector space structure (addition/subtraction/norms)

• Can use norms to describe and quantify properties of signals

Signals as vectors

Signals can take real or complex values.

In both cases, a natural vector space structure:

- Can add two signals: \(x_1[n] + x_2[n] \)
- Can multiply a signal by a scalar number: \(C \cdot x[n] \)
- Form linear combinations: \(C_1 \cdot x_1[n] + C_2 \cdot x_2[n] \)
Various Types

- Audio signal (sound pressure on microphone)
- B/W video signal (light intensity on photosensor)
- Voltage/current in a circuit (measure with multimeter)
- Car speed (from tachometer)
- Robot arm position (from rotary encoder)
- Daily prices of books / air tickets / stocks
- Hourly glucose level in blood (from glucose monitor)
- Heart rate (from heart rate sensor)

Vector Refresher

- Length: $|x|^2 = x \cdot x$
- Decomposition: $x = c_1 y_1 + c_2 y_2$
- Dot Product of \perp is 0: $x \cdot y = 0$
Vectors [2]

- Magnitude and Direction

\[f \cdot x = |f||x| \cos(\theta) \]

- Component (projection) of a vector along another vector

\[f = cx + e \quad \text{Error Vector} \]

Vectors [3]

- \(\infty \) bases given \(\vec{x} \)

- Which is the best one?

\[f = cx \]
\[c|x| = |f| \cos \theta \]
\[c|x|^2 = |f||x| \cos \theta = f \cdot x \]
\[c = \frac{f \cdot x}{x \cdot x} = \frac{1}{|x|^2} f \cdot x \]
\[f \cdot x = 0 \]

- Can I allow more basis vectors than I have dimensions?
Signals Are Vectors

- A Vector / Signal can represent a sum of its components

 Remember (Lecture 5, Slide 10):
 \[\text{Total response} = \text{Zero-input response} + \text{Zero-state response} \]

- Vectors are Linear
 - They have additivity and homogeneity

Vectors / Signals Can Be Multidimensional

- A signal is a quantity that varies as a function of an index set

- They can be multidimensional:
 - 1-dim, discrete index (time): \(x[n] \)
 - 1-dim, continuous index (time): \(x(t) \)
 - 2-dim, discrete (e.g., a B/W or RGB image): \(x[j; k] \)
 - 3-dim, video signal (e.g, video): \(x[j; k; n] \)
It's Just a Linear Map

- $y[n] = 2u[n] - 1$ is a linear map
- BUT $y[n] = 2(u[n] - 1)$ is NOT Why?

- Because of homogeneity!

 $T(au) = aT(u)$

Norms of signals

Can introduce a notion of signals being "nearby."

This is characterized by a **metric** (or distance function).

$$d(x, y)$$

If compatible with the vector space structure, we have a **norm**.

$$\|x - y\|$$
Examples of Norms

Can use many different norms, depending on what we want to do. The following are particularly important:

- \(\ell_2 \) (Euclidean) norm:

\[
\|x\|_2 = \left(\sum_{k=1}^{n} |x[k]|^2 \right)^{\frac{1}{2}} \quad \text{norm}(x, 2)
\]

- \(\ell_1 \) norm:

\[
\|x\|_1 = \sum_{k=1}^{n} |x[k]| \quad \text{norm}(x, 1)
\]

- \(\ell_\infty \) norm:

\[
\|x\|_\infty = \max_k |x[k]| \quad \text{norm}(x, \infty)
\]

What are the differences?

Properties of norms

For any norm \(\| \cdot \| \), and any signal \(x \), we have:

- Linearity: if \(C \) is a scalar,

\[
\|C \cdot x\| = |C| \cdot \|x\|
\]

- Subadditivity (triangle inequality):

\[
\|x + y\| \leq \|x\| + \|y\|
\]

Can use norms:

- To detect whether a signal is (approximately) zero.
- To compare two signals, and determine if they are “close.”

\[
\|x - y\| \approx 0
\]
Signal representation by Orthogonal Signal Set

- Orthogonal Vector Space

A signal may be thought of as having components.

Component of a Signal

\[f(t) = c \pi(t) \quad t_1 \leq t \leq t_2 \]

\[c = \frac{\int_{t_1}^{t_2} f(t) \pi(t) \, dt}{\int_{t_1}^{t_2} \pi^2(t) \, dt} = \frac{1}{E_\pi} \int_{t_1}^{t_2} f(t) \pi(t) \, dt \]

- Let’s take an example:

\[f(t) = c \sin t \quad 0 \leq t \leq 2\pi \]

\[\pi(t) = \sin t \quad \text{and} \quad E_\pi = \int_0^{2\pi} \sin^2(t) \, dt = \pi \]

\[f(t) = c \sin t \]

Fig. 3.5 Approximation of square signal in terms of a single sinusoid.

Thus

\[f(t) = \frac{4}{\pi} \sin t \quad (3.14) \]
Basis Spaces of a Signal

$$\int_{t_1}^{t_2} x_m(t)x_n(t) \, dt = \begin{cases} 0 & m \neq n \\ E_n & m = n \end{cases}$$

\[f(t) = c_1x_1(t) + c_2x_2(t) + \cdots + c_Nx_N(t) \]
\[= \sum_{n=1}^{N} c_n x_n(t) \]

\[e(t) = f(t) - \sum_{n=1}^{N} c_n x_n(t) \]

\[c_n = \frac{\int_{t_1}^{t_2} f(t)x_n(t) \, dt}{\int_{t_1}^{t_2} x_n^2(t) \, dt} \]
\[= \frac{1}{E_n} \int_{t_1}^{t_2} f(t)x_n(t) \, dt \quad n = 1, 2, \ldots, N \]

\[f(t) = c_1x_1(t) + c_2x_2(t) + \cdots + c_Nx_N(t) + \cdots \]
\[= \sum_{n=1}^{\infty} c_n x_n(t) \quad t_1 \leq t \leq t_2 \]

- Observe that the error energy E_e generally decreases as N, the number of terms, is increased because the term $Ck^2 E_k$ is nonnegative. Hence, it is possible that the error energy $\to 0$ as $N \to \infty$. When this happens, the orthogonal signal set is said to be complete.
- In this case, it’s no more an approximation but an equality
Linear combinations of signals

Application Example: Active Noise Cancellation

A “noise” signal, that we want to get rid of.

- At subject location, signal is
 \[x[n] \]

- Microphone picks up signal
 \[x_c[n] \]

- Subtract the two signals:
 \[y(t) = x(t) - x_c(t) \]

Notice careful synchronization is needed!
Then a System is a **Matrix**

\[
\begin{align*}
 y &= Du, \\
 \begin{bmatrix}
 y[1] \\
 y[2] \\
 \vdots \\
 y[M]
 \end{bmatrix} &=
 \begin{bmatrix}
 D_{11} & D_{12} & \cdots & D_{1N} \\
 D_{21} & D_{22} & \cdots & D_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 D_{M1} & D_{M2} & \cdots & D_{MN}
 \end{bmatrix}
 \begin{bmatrix}
 u[1] \\
 u[2] \\
 \vdots \\
 u[N]
 \end{bmatrix},
\end{align*}
\]

\[
y[i] = \sum_j D_{ij}u[j].
\]
Linear Time Invariant

- Linear & Time-invariant (of course - tautology!)
- Impulse response: \(h(t) = F(\delta(t)) \)
- Why?
 - Since it is linear the output response \((y) \) to any input \((x) \) is:
 \[
 x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \, d\tau
 \]
 \[
 y(t) = F \left[\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \, d\tau \right] = \int_{-\infty}^{\infty} x(\tau) F(\delta(t-\tau)) \, d\tau
 \]
 \[
 h(t-\tau) \equiv F(\delta(t-\tau))
 \]
 \[
 \Rightarrow y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) \, d\tau = x(t) \ast h(t)
 \]

- The output of any continuous-time LTI system is the convolution of input \(u(t) \) with the impulse response \(F(\delta(t)) \) of the system.

Linear Dynamic [Differential] System

\(\equiv \) LTI systems for which the input & output are linear ODEs

\[
a_0 y + a_1 \frac{dy}{dt} + \cdots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \cdots + b_m \frac{d^m x}{dt^m}
\]

\[
Laplace:
\]

\[
a_0 Y(s) + a_1 s Y(s) + \cdots + a_n s^n Y(s) = b_0 X(s) + b_1 s X(s) + \cdots + b_m s^m X(s)
\]

\[
A(s) Y(s) = B(s) X(s)
\]

- Total response = Zero-input response + Zero-state response
Linear Systems and ODE’s

- Linear system described by differential equation

\[a_0 y + a_1 \frac{dy}{dt} + \cdots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \cdots + b_m \frac{d^m x}{dt^m} \]

- Which using Laplace Transforms can be written as

\[a_0 Y(s) + a_1 sY(s) + \cdots + a_n s^n Y(s) = b_0 X(s) + b_1 sX(s) + \cdots + b_m s^m X(s) \]

\[A(s)Y(s) = B(s)X(s) \]

where \(A(s) \) and \(B(s) \) are polynomials in \(s \)

Unit Impulse Response

- \(\delta(t) \): Impulsive excitation
- \(h(t) \): characteristic mode terms

Ex:

EXAMPLE 2.4

Determine the unit impulse response \(h(t) \) for a system specified by the equation

\[(s^2 + 3s + 2) y(t) = f(t) \]

This is a second-order system \((n = 2)\) having the characteristic polynomial

\[s^2 + 3s + 2 = (s + 1)(s + 2) \]

The characteristic roots of this system are \(s = -1 \) and \(s = -2 \). Therefore

\[s(t) = e^{-t} + 2e^{-2t} \]

(2.26a)

Differentiation of this equation yields

\[s(t) = -e^{-t} - 2e^{-2t} \]

(2.26b)

The initial conditions are free \(y(0) = 0 \) for \(n = 2 \)

\[y(0) = 1 \quad \text{and} \quad y(0) = 0 \]

Solving \(s(t) = e^{-t} + 2e^{-2t} \) to fulfillment of initial conditions yields

\[c_1 = 1 \quad \text{and} \quad c_2 = -1 \]

Therefore

\[y(t) = e^{-t} - 2e^{-2t} \]

Moreover, according to Eq. 2.22, the \(s(t) \) so that

\[s(t) = s(t) = y(t) = e^{-t} + 2e^{-2t} \]

Also if in this case, \(y(t) \) the second-order term is absent in \(s(t) \). Therefore

\[y(t) = (F(y(t)) = e^{-t} + 2e^{-2t} \]
Where are we going with this?

This can help simplify matters…

An Example

Consider the following system:

- How to model and predict (and control the output)?

Source: EE263 (s.1-13)
This can help simplify matters…

An Example

Consider the following system:

\[x(t) \in \mathbb{R}^8, \quad y(t) \in \mathbb{R}^1 \] → 8-state, single-output system

• Autonomous: No input yet! (\(u(t) = 0 \))
This can help simplify matters…

An Example

- Consider the following system:
Example: Let’s consider the control…

Expand the system to have a control input…

• $B \in \mathbb{R}^{8 \times 2}$, $C \in \mathbb{R}^{2 \times 8}$ (note: the 2nd dimension of C)

$$\dot{x} = Ax + Bu, \quad y = Cx, \quad x(0) = 0$$

• Problem: Find u such that $y_{des}(t) = (1, -2)$

• A simple (and rational) approach:
 – solve the above equation!
 – Assume: static conditions (u, x, y constant)

 ➔ Solve for u:

$$u_{static} = (-CA^{-1}B)^{-1}y_{des} = \begin{bmatrix} -0.63 \\ 0.36 \end{bmatrix}$$

Example: Apply $u = u_{static}$ and presto!

Note: It takes 1500 seconds for the y(t) to converge …
but that’s natural … can we do better?

Source: EE263 (s.1-13)
Example: Yes we can!

- How about:

![Graph](image1.png)

Example: **How?** How about a more clever input?

- How about:

![Graph](image2.png)

- Converges in 50 seconds (3.3% of the time 😊)

Source: EE263 (s.1-13)
Example: Can we beat it? Larger inputs & LDS

- Converges in 20 seconds (1.3% of the time 😊)

Next Time…

- We’ll talk about Other System Properties 😊

- We will introduce this via the lens of:
 “Systems as Maps. Signals as Vectors”

- Review:
 - Phasers, complex numbers, polar to rectangular, and general functional forms.
 - Chapter B and Chapter 1 of Lathi
 (particularly the first sections on signals & classification thereof)

- Register on Platypus

- Try the practise assignment