
Virtual Robot Experimentation Platform
V-REP: A Versatile 3D Robot Simulator

Marc Freese*, Surya Singh, Fumio Ozaki, and Nobuto Matsuhira

*K-Team Corporation, Y-Parc - Rue Galilée 9,
1400 Yverdon-les-Bains, Switzerland

mfreese@gmx.ch,spns@acfr.usyd.edu.au,
{fumio.ozaki,nobuto.matsuhira}@toshiba.co.jp

www.v-rep.eu, www.k-team.com

Abstract. From exploring planets to cleaning homes, the reach and
versatility of robotics is vast. The integration of actuation, sensing and
control makes robotics systems powerful, but complicates their simula-
tion. This paper introduces a modular and decentralized architecture
for robotics simulation. In contrast to centralized approaches, this bal-
ances functionality, provides more diversity, and simplifies connectiv-
ity between (independent) calculation modules. As the Virtual Robot
Experimentation Platform (V-REP) demonstrates, this gives a small-
footprint 3D robot simulator that concurrently simulates control, actua-
tion, sensing and monitoring. Its distributed and modular approach are
ideal for complex scenarios in which a diversity of sensors and actuators
operate asynchronously with various rates and characteristics. This al-
lows for versatile prototyping applications including systems verification,
safety/remote monitoring, rapid algorithm development, and factory au-
tomation simulation.

Keywords: Robot Simulator, V-REP, Distributed Control

1 Introduction

The overall architecture and control methodology are crucial elements in robot
simulators. A robust systems approach advocates for a versatile and fine-grained
simulation strategy. By emphasizing modularity, scalability and expandability,
simulations remain robust particularly when abstracting underlying robotic sys-
tems since system specificities cannot be foreseen.

The increased processing power of computers, the advent of several dynam-
ics (physics) libraries, as well as faster 3D graphics hardware have drastically
changed the landscape in the field of (3D) robotics simulation. While it is pos-
sible to cobble together these various elements almost trivially, good simulation
requires careful architecture to yield both performance and accurate calculations
(particularly with respect to dynamic conditions). For example, rather than us-
ing dynamics blindly for every aspect of a simulation, it is preferable to use it
only when other methods (e.g. kinematics) fail. A modular architecture allows
for the combination of various functionality to obtain the best possible synergy.



2 Virtual Robot Experimentation Platform

Compared to robots a few years ago, robots now employ highly complex
control methods. Practically those are implemented in a distributed fashion in
order to simplify development and the overall control task complexity. Just as
distributed communication networks and protocols allow a plug-and-play be-
havior [3], a distributed control approach is needed for robotic simulation. In
addition to robustness and parallelism (similar to the distributed hardware), it
allows a robotic simulator to offer a copy-and-paste functionality not only for
objects or models, but also for their associated control methods: robots or robot
elements can be placed and combined in a scene without having to adjust any
control code.

The paper is organized in three parts. The first part of this paper focuses on
V-REP’s architecture; based on various functionalities wrapped in scene objects
or calculation modules, it allows the user to pick from them as requires, or as best
for a given simulation. Moreover a special care has been given so as to develop
those functionalities in a balanced manner, giving each one the same amount of
attention as one would do in a real robotic system. The second part of this paper
focuses on V-REP’s control methodology; in V-REP, control is distributed and
based on an unlimited number of scripts that are directly associated or attached
to scene objects. Finally, in order to further clarify elements introduced in the
first and second part of this paper, the third part describes a typical V-REP
simulation set-up.

2 V-REP’s Architecture

V-REP is designed around a versatile architecture. There is no main or cen-
tral function in V-REP. Rather, V-REP possesses various relatively independent
functions, that can be enabled or disabled as required.

Imagine a simulation scenario where an industrial robot has to pick-up boxes
and move them to another location; V-REP computes the dynamics for grasping
and holding the boxes and performs a kinematic simulation for the other parts
of the cycle when dynamic effects are negligible. This approach makes it possible
to calculate the industrial robot’s movement quickly and precisely, which would
not be the case had it been simulated entirely using complex dynamics libraries.
This type of hybrid simulation is justified in this situation, if the robot is stiff
and fixed and not otherwise influenced by its environment.

In addition to adaptively enabling various of its functionalities in a selective
manner, V-REP can also use them in a symbiotic manner, having one cooperate
with another. In the case of a humanoid robot, for example, V-REP handles
leg movements by (a) first calculating inverse kinematics for each leg (i.e., from
a desired foot position and orientation, all leg joint positions are calculated);
and then (b) assigns the calculated joint positions to be used as target joint
positions by the dynamics module. This allows specifying the humanoid motion
in a very versatile way, since each foot would simply have to be assigned to follow
a 6-dimensional path: the rest of calculations are automatically taken care of.



Virtual Robot Experimentation Platform 3

2.1 Scene Objects

A V-REP simulation scene contains several scene objects or elemental objects
that are assembled in a tree-like hierarchy. The following scene objects are sup-
ported in V-REP:

– Joints: joints are kinematic lower pairs for that link two or more scene ob-
jects together with one to three degrees of freedom (e.g., prismatic, revolute,
screw-like, etc.).

– Paths: paths allow complex movement definitions in space (succession of
freely combinable translations, rotations and/or pauses), and are used for
guiding a welding robot’s torch along a predefined trajectory, or for allowing
conveyor belt movements for example. Children of a path object can be
constrained to move along the path trajectory at a given velocity.

– Shapes: shapes are triangular meshes, used for rigid body visualization.
Other scene objects or calculation modules rely on shapes for their calcula-
tions (collision detection, minimum distance calculation, etc.).

– Cameras and lights: cameras and lights are used for scene visualization
purposes mainly, but can also have effects on other scene objects (e.g. lights
directly influence rendering sensors).

– Dummies: dummies are “points with orientation,” or reference frames, that
can be used for various tasks, and are mainly used in conjunction with other
scene objects, and as such can be seen as “helpers.”

– Proximity sensors: The proximity sensors objects perform an exact min-
imum distance calculation within a given detection volume [4] (see Fig. 1)
as opposed to simply performing collision detection between some selected
sensing rays and the environment; hence allowing for reflectance effects due
to sensor/surface angles.

– Rendering sensors: rendering sensors in V-REP are camera-like sensors,
allowing to extract complex image information from a simulation scene (col-
ors, object sizes, depth maps, etc.) (see Fig. 1). The built-in filtering and
image processing enable the composition of as blocks of filter elements (with
additional filter elements via plugins). Rendering sensors make use of hard-
ware acceleration for the raw image acquisition (OpenGL).

– Force sensors: force sensors are rigid links between shapes, that can record
applied forces and torques, and that can conditionally saturate.

– Mills: mills are customizable convex volumes that can be used to simulate
surface cutting operations on shapes (e.g., milling, laser cutting, etc.).

– Graphs: graphs are scene objects that can record a large variety of one di-
mensional data streams. Data streams can be displayed directly (time graph
of a given data type), or combined with each other to display X/Y graphs,
or 3D curves.



4 Virtual Robot Experimentation Platform

Fig. 1. Mobile robot (right) equipped with 5 proximity sensors and one rendering
sensor. The rendering sensor is not used for detection is this case, but for texture
generation for the LCD panel. (The left robot model is courtesy of K-Team Corp., the
right robot model is courtesy of Cubictek Corp. and NT Research Corp).

2.2 Calculation Modules

Scene objects are rarely used on their own, they rather operate on (or in con-
junction with) other scene objects (e.g. a proximity sensor will detect shapes
or dummies that intersect with its detection volume). In addition, V-REP has
several calculation modules that can directly operate on one or several scene
objects. Following are V-REP’s main calculation modules:

– Forward and inverse kinematics module: allows kinematics calculations
for any type of mechanism (branched, closed, redundant, containing nested
loops, etc.). The module is based on calculation of the damped least squares
pseudoinverse [7]. It supports conditional solving, damped and weighted res-
olution, and obstacle avoidance based contraints.

– Dynamics or physics module: allows handling rigid body dynamics cal-
culation and interaction (collision response, grasping, etc.) via the Bullet
Physics Library [1].

– Path planning module: allows holonomic path planning tasks and non-
holonomic path planning tasks (for car-like vehicles) via an approach derived
from the Rapidly-exploring Random Tree (RRT) algorithm[6].



Virtual Robot Experimentation Platform 5

– Collision detection module: allows fast interference checking between
any shape or collection of shapes. Optionally, the collision contour can also
be calculated. The module uses data structures based on a binary tree of
Oriented Bounding Boxes [5] for accelerations. Additional optimization is
achieved with a temporal coherency caching technique.

– Minimum distance calculation module: allows fast minimum distance
calculations between any shape (convex, concave, open, closed, etc.) or col-
lection of shapes. The module uses the same data structures as the collision
detection module. Additional optimization is also achieved with a temporal
coherency caching technique.

Except for the dynamics or physics modules that directly operate on all dy-
namically enabled scene objects, other calculation modules require the definition
of a calculation task or calculation object, that specifies on which scene objects
the module should operate and how. If for example the user wishes to have the
minimum distance between shape A and shape B automatically calculated and
maybe also recorded, then a minimum distance object has to be defined, having
as parameters shape A and shape B. Fig. 2 shows V-REP’s typical simulation
loop, including main scene objects and calculation modules.

Fig. 2. Simulation loop in V-REP.

2.3 Scalability

Destruction of one or several scene objects can involve automatic destruction of
an associated calculation object. In a similar way, duplication of one or several
scene objects can involve automatic duplication of associated calculation objects.
This also includes automatic duplication of associated control scripts (see next
section). The result of this is that duplicated scene objects will automatically be
fully functional, allowing a flexible plug-and-play like behaviour.



6 Virtual Robot Experimentation Platform

3 V-REP’s Control Methodology

V-REP offers various means for controlling simulations or even to customizing
the simulator itself (see Fig. 3). V-REP is wrapped in a function library, and
requires a client application to run. The V-REP default client application is quite
simple and takes care of loading extension modules , registers event callbacks (or
message callbacks), relays them to the loaded extension modules, initializes the
simulator, and handles the application and simulation loop. In addition, custom
simulation functions can be added via:

– Scripts in the Lua language. Lua [2] is a lightweight extension program-
ming language designed to support procedural programming. The Lua script
interpreter is embedded in V-REP, and extended with several hundreds of V-
REP specific commands. Scripts in V-REP are the main control mechanism
for a simulation.

– Extension modules to V-REP (plugins). Extension modules allow for
registering and handling custom commands. A high-level script command
(e.g., robotMoveAndAvoidObstacles(duration)) can be then an extension mod-
ule can handle this high-level command by executing the corresponding logic
and low-level API function calls in a fast and hidden fashion.

Fig. 3. Control architecture in V-REP. Greyed areas can be customized by the user. (1)
C/C++ API calls to V-REP from the client application, or from extension modules.
(2) Script handling calls. Typically simHandleChildScript(sim handle all). Executes all
first encountered child scripts in the current hierarchy. (3) Lua API calls to V-REP
from scripts. (4) Callback calls to extension modules. Originate when a script calls a
custom function, previously registered by an extension module. (5) Event callback calls
to the client application. (6) Relayed event calls to extension modules.



Virtual Robot Experimentation Platform 7

3.1 Script Calling Methodology

A simulation is handled when the client application calls a main script, which
in turn can call child scripts.

Each simulation scene has exactly one main script that handles all default
behaviour of a simulation, allowing simple simulations to run without even writ-
ing a single line of code. The main script is called at every simulation pass and
is non-threaded.

Child scripts on the other hand are not limited in number, and are associated
with (or attached to) scene objects. As such, they are automatically duplicated if
the associated scene object is duplicated. In addition to that, duplicated scripts
do not need any code adjustment and will automatically fetch correct object
handles when accessing them. Child scripts can be non-threaded or threaded
(i.e. launch a new thread).

The default child script calling methodology is hierarchial; each script is in
charge of calling all first encountered child scripts in the current hierarchy (since
scene objects are built in a tree-like hierarchy, scripts automatically inherit the
same hierarchy). This is achieved with a single function call: simHandleChild-
Script(sim handle all).

Taking the example of Fig. 4, when the main script calls simHandleChild-
Script(sim handle all), then child scripts associated with objects 3, 4 and 7 will
be executed. Only when the child script associated with object 3 in its turn calls
simHandleChildScript(sim handle all), will child script associated with object 6
also be executed.

Fig. 4. Main script and child scripts in a scene.

The default main script will always call simHandleChildScript(sim handle all),
and child scripts should do the same.



8 Virtual Robot Experimentation Platform

3.2 Non-threaded child script example

Following code illustrates an empty non-threaded child script in V-REP:

if (simGetScriptExecutionCount()==0) then

-- Initialization code comes here

end

simHandleChildScript(sim_handle_all) -- Handles child scripts

-- Main code comes here

if (simGetSimulationState()==sim_simulation_advancing_lastbeforestop) then

-- Restoration code comes here

end

Non-threaded child scripts are ”pass-through”, which means that at each sim-
ulation pass they will execute, and directly return control to the caller. The caller
can provide input parameters (input arguments). When a child script is called ex-
plicitely (i.e. simHandleChildScript(”childScriptID”) instead of simHandleChild-
Script(sim handle all)), then it can also return output parameters (return val-
ues).

3.3 Threaded child script example

Threaded child scripts require a slightly differentiated handling, since other child
scripts built on top of them should also be guaranteed to be executed at each
simulation pass. Following code illustrates an empty, threaded child script in
V-REP:

simDelegateChildScriptExecution() -- Delegates child script execution

simSetThreadSwitchTiming(100) -- optional

-- Initialization code comes here

while (simGetSimulationState()~=sim_simulation_advancing_abouttostop) do

-- Main code comes here

simSwitchThread() -- optional

end

-- Restoration code comes here

As can be seen from above code, threaded child scripts should delegate their
child script execution to the main script to make sure they will be called at each
simulation pass. The code also shows a particularity of V-REP’s threads: V-REP
doesn’t use regular threads, but rather coroutines. The advantage of this is a
greater flexibility in thread execution timing, with possibility of synchronization
with the main script. Indeed, simSetThreadSwitchTiming sets the time after
which the thread should automatically switch to another thread. The switching
can also be explicitely performed with simSwitchThread. Control is given back
to threads each time the main script is about to execute.



Virtual Robot Experimentation Platform 9

3.4 Scalability

This distributive, hierachial script execution mechanism makes the handling of
newly added (e.g. copy/pasted) scene objects or models very easy, since associ-
ated child scripts will automatically be executed, without having to adjust or
modify any code. Additionally, added child scripts will not be executed in a
random order, but according to their position within the scene hierarchy.

Extension modules to V-REP seamlessly integrate into this distributive con-
trol approach: extending V-REP with a specific robot language becomes as easy
as wrapping the robot language interpreter into a V-REP extension module. A
similar approach can be taken to embed emulators (e.g. microcontroller emula-
tors) into V-REP, in order to control a simulation natively for instance.

Finally, V-REP offers sofisticated messaging mechanisms. In particular for
inter-script communications; messages can be global (i.e. can be received by all
child scripts), local (i.e. can be received only by child scripts in the current
hierarchy), or direct (i.e. can only be received by a single specific child script).

4 Example Simulation Set-up

Following example scene in V-REP (see Fig. 5) clarifies several previously men-
tioned aspects of the simulator.

Fig. 5. V-REP example scene. The left part shows the scene hierarchy, the right part
shows the scene 3D content.

The scene contains a hexapod walking robot (defined by the hierarchy tree
starting at the scene object ”hexapod”), and a little toy scene object (”Bee-
Toy”). The hexapod itself is set-up with 6 identical legs rotated by 60 degrees



10 Virtual Robot Experimentation Platform

relative to each others. For each leg, an inverse kinematics object was defined
that resolves the correct leg joint positions for a given desired foot position;
inverse kinematics constraints are indicated in the scene hierarchy with red ar-
rows (e.g. ”hexa footTarget” is the desired foot position for ”hexa footTip”).
The joint positions, calculated by the forward and inverse kinematics module,
are then applied as target positions by the dynamics or physics module. While a
child script associated with ”hexapod” is in charge of generating a foot motion
sequence, each leg has an own child script that will apply the generated foot
motion sequence with a different delay. Except for that delay, the 6 leg child
scripts are identical and the first one is reproduced here:

baseHandle=... -- Handle of the base object ("hexapod")

if (simGetScriptExecutionCount()==0) then

-- Following is the movement delay for this leg:

modulePos=0

-- Retrieve various handles and prepare initial values:

tip=simGetObjectHandle(’hexa_footTip’)

target=simGetObjectHandle(’hexa_footTarget’)

j1=simGetObjectHandle(’hexa_joint1’)

j2=simGetObjectHandle(’hexa_joint2’)

j3=simGetObjectHandle(’hexa_joint3’)

simSetJointPosition(j1,0)

simSetJointPosition(j2,-30*math.pi/180)

simSetJointPosition(j3,120*math.pi/180)

footOriginalPos=simGetObjectPosition(tip,baseHandle)

isf=simGetObjectSizeFactor(baseHandle)

end

-- Read the movement data:

data=simReceiveData(0,’HEXA_x’)

xMovementTable=simUnpackFloats(data)

data=simReceiveData(0,’HEXA_y’)

yMovementTable=simUnpackFloats(data)

data=simReceiveData(0,’HEXA_z’)

zMovementTable=simUnpackFloats(data)

data=simReceiveData(0,’HEXA_imd’)

interModuleDelay=simUnpackInts(data)[1]

-- Make sure that scaling during simulation will work flawlessly:

sf=simGetObjectSizeFactor(baseHandle)

af=sf/isf

-- Apply the movement data (with the appropriate delay):

targetNewPos={

footOriginalPos[1]*af+xMovementTable[1+modulePos*interModuleDelay]*sf,

footOriginalPos[2]*af+yMovementTable[1+modulePos*interModuleDelay]*sf,

footOriginalPos[3]*af+zMovementTable[1+modulePos*interModuleDelay]*sf}

-- The IK module will automatically have the foot tip follow the "target",

-- so we just need to set the position of the "target" object:

simSetObjectPosition(target,baseHandle,targetNewPos)

-- Make sure that any attached child script will also be executed:

simHandleChildScript(sim_handle_all_except_explicit)



Virtual Robot Experimentation Platform 11

A minimum distance object between all scene objects composing the hexa-
pod and all other scene objects was defined so that the hexapod clearance can be
tracked. A paint nozzle model was attached to the hexapod and allows marking
the floor with color. The paint nozzle model operates independently from the
hexapod robot and is handled by its own child script. The scene objects ”hexa-
pod” and ”PaintNozzle” are associated with 2 custom dialogs that allow users
to interact with a script’s behaviour. This represents another powerful feature
in V-REP: an unlimited number of custom dialogs can be defined and associ-
ated with scene objects. They are destroyed or duplicated in a similar way as
calculation objects (refer to section 2.3).

5 Conclusion

V-REP demonstrates a modular simulation architecture combined with a dis-
tributed control mechanism. This results in a versatile and scalable framework
that fits the simulation needs of complex robotic systems with several forms of
asynchronous interaction.

V-REP provides a balanced functionality through a multitude of additional
calculation modules, offering a real advantage in terms of simulation fidelity and
simulation completeness (see Fig. 6) .

Fig. 6. Screen shot of V-REP’s application main window (robot models are courtesy
of Lyall Randell, Cubictek Corp., NT Research Corp., and ABB Corp. there is no link
of any kind between V-REP and ABB Corp.)



12 Virtual Robot Experimentation Platform

One central aspect further enabling V-REP’s versatility and scalability is
its distributed control approach; it is possible to test configurations with 2, 3,
or up to several hundreds of (identical or different) robots (e.g. in a swarm
configuration), by simple drag-and-drop or copy-and-paste actions. There is no
need for code adjustment, not even a supervisor program is required. V-REP’s
versatility and scalability allows for this plug-and-play like behavior.

Finally, V-REP’s expandability through extension modules (plugins), gives
the user an easy and fast way to customize a simulation, or the simulator itself.

References

1. Bullet physics library, http://www.bulletphysics.org
2. Lua, http://www.lua.org
3. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.: RT-component object

model in RT-middleware - distributed component middleware for RT (robot tech-
nology). In: 2005 IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA2005). pp. 457–462. Espoo, Finland (June 2005)

4. Freese, M., Ozaki, F., Matsuhira, N.: Collision detection, distance calculation and
proximity sensor simulation using oriented bounding box trees. In: 4th International
Conference on Advanced Mechatronics. pp. 13–18. Asahikawa, Japan (October 2004)

5. Gottschalk, S., Lin, M.C., Manocha, D.: OBB-tree : a hierarchical structure for
rapid interference detection. In: ACM SIGGRAPH. pp. 171–180. New Orleans, USA
(October 1996)

6. Kuffner Jr., J.J.: RRT-connect: an efficient approach to single-query path planning.
In: IEEE International Conference on Robotics and Automation. pp. 995–1001. San
Fransisco, USA (April 2000)

7. Wampler, C.W.: Manipulator inverse kinematic solutions based on vector formula-
tions and damped least squares methods. IEEE Trans. Syst., Man, Cybern. 16(1),
93–101 (1986)


