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METR4202 -- Robotics 

Tutorial 12 – Weeks 12 & 13:  Cart-Pole Inverted Pendulum 
 

Reading  

Please read/review Lecture 12 
 

Questions 

 

1. Description of the cart-pole system 

An inverted pendulum is a classic problem in nonlinear dynamics and control. A 

typical arrangement of such systems is a cart-pole system as in Figure 1. 

 
Figure 1: a typical cart-pole system 

 

The cart is a one dimensional horizontally moving base; the mass of the pendulum is 

evenly distributed. The following variables are specified: 

 
Variable Definition 

M Mass of the cart (kg) 

L Length of the pendulum’s centre of mass (m) 

F  Force applied to cart (N) 

m Mass of the pendulum(kg) 

x Cart horizontal displacement from origin 

(𝑘𝑔 ∗ 𝑚2) 

 

The goal is to stabilize the pendulum at the upward (and downward) position. 
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2. Derivation of the dynamical model 

 

Try to derive the dynamic model of the system: 

 
2( ) cos sinM m x mL mL f        

2cos sin 0mLx mL mgL      

 
3. Converting the system into linear equations 

 

Try to linearize the above equations at upward (θ ≈ 0) and downward (θ ≈ π) 

positions. (Hint: using Taylor expansion or by ignoring the second order terms, at 

upward position sinθ ≈ θ cosθ ≈ 1; at downward position try to use θ′ = θ − π ) 

 

 

4. Computing a state space model 

 

Use the result above, get the state space model for the linearized systems (Hint: An 

option is to take [

𝑥
𝑥̇
𝜃
𝜃̇

] as state variable).  

 

5. Convert between modal and canonical forms  

 

Convert the state space model above into modal and canonical forms  

(hint: try the matlab commands: canon, modreal) 

 

 

6. Check controllability  

 

Check controllability for both conditions (hint :“ctrb”) and design LQR controller to 

stabilize pendulum at the equilibriums for upward position and downward position. 

(hint: Matlab function “lqr” may be useful for this design(or function “place” may be 

used if you want to place the close loop system poles arbitrarily) and “lsim” may be 

used to test the close loop response after adding in the controller) 
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More Hints 

(Please try to earnestly do this first without looking at the solution) 

Derivation of inverted pendulum dynamic equations 

 

 

Figure 1: a typical cart-pole system 

 

Using Lagrangian method, T V  where T is the kinematic energy and V the potential energy of 

the system. 

c pT T T   where the first term is the kinematic energy of the cart and the second term is that of the 

pole. As the coordinate of the cart and pole can be written as 
0

x 
 
 

and 
sin

cos

x L

L





  
 

 
, the kinematic 

energy can be written as:
21

2
cT Mx and 

2 2
1

( sin ) ( cos )
2

pT m x L L 
 

     
 

 

The potential energy is cosV mgL   

Thus the total energy 

2 2

21 1
( sin ) ( cos ) cos

2 2
T V Mx m x L L mgL  

 
         

 
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The generalized coordinates are selected as 
x

X


 
  
 

so the Lagrangian equations are: 

0

d
f

dt x x

d

dt  

 
 

 

 
 

 

 

This yields 
2( ) cos sinM m x mL mL f        

And 
2cos sin 0mLx mL mgL      

After some calculation: 

2

2

2

2

sin ( cos )

sin

cos sin cos ( ) sin

( sin )

f m L g
x

M m

f mL M m g

L M m

  



    




 




   




 

 

Define 

x

x
X





 
 
 
 
 
 

 

2

2

2

2

sin ( cos )

sin

cos sin cos ( ) sin

( sin )

x

x f m L g

x M m
X

f mL M m g

L M m

  





     



 
 

    
 

     
 

 
 

     
 

 

……..(1) 

 Linearizing at upward position, the equilibrium is 

0

0

0

0

x

x
X





   
   
    
   
   
   

 

By ignoring second order terms, 

2

2

2

2

0 1 0 0

sin ( cos )
0 0 0

sin

0 0 0 1

( ) ( )cos sin cos ( ) sin
0 0 0

( sin )

x x

x f m L g f m g mg

x M m M M
X

f M m g M m gf mL M m g

LM LML M m

   



 

     



     
               
               
     
            
        

0

1

0

1

x

x M
f

LM





 
  
  
   
  

   
    
   
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1 0 0 0

0 0 1 0

x

x x
y

 



 
 

              
 
 

 

 Linearizing at downward position, 

0

0

0

x

x
X

 



   
   
    
   
   
   

 

Define      , since   , 0 .    so    and    . 

And sin sin( ) sin            , cos cos( ) 1      . 

Substitute above equations into (1) and write   as   for simplicity: 

0 1 0 0 0

1
0 0 0

0 0 0 1 0

( ) ( ) 1
0 0 0

x

x xf m g mg

x xM M M
X f

f M m g M m g

LM LM LM



  

  

     
        
        
           
        
        

          
          

 

And 
1 0 0 0

0 0 1 0

x

x x
y

 



 
 

              
 
 

 

Controllability: 

 

Controller design (LQR): 

Background knowledge about LQR control: 

The Linear Quadratic Regulator (LQR) utilizes a cost function 
0

( )T TJ x Qx u Ru dt


  to 

find the optimal control law for a linear system, 
Tx Qx is for regulation effort and term 

Tu Ru  

is to constrain the actuator input. The feedback control law that can minimize the cost 

function will be in the form of u Kx  where 
1 TK R B P and term P is the solution of 

Riccati equation 
1 0T TA P PA PBR B P Q    . Q is a positive-semi definite matrix and R 

is positive definite. The controller can be found by using Matlab function “lqr”. 

 

 

 

 

   
 


