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METR4202 -- Robotics 

Tutorial 4 – Week 4: Trajectory Generation & Motion Planning 

 

Reading  

Please read/review chapter 9 of Robotics, Vision and Control. 

 

Questions 

 

Figure 1: Two DOF Robot manipulator 

1. Write the full equation of motion for the 2R arm above  

(i.e., τ1 and τ2 as a function of θ1 and θ2 and its derivatives)  

 

Start with the masses of links: m1 and m2, to get the Mass Matrix recall (lecture 5) 
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Note this is with respect to the configuration variable, not time.   

On that subject, the derivative with respect to time would be: 
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The center of mass of each link is at the joint center, this l1≡a1/2 and l2≡a2/2 

 

To compute the Jacobians (Jv and Jω), we need to calculate the forward kinematics.   
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Recall that the position vectors (Lec 3, Slide 34) for a 2R arm are: 
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(this reads as “Position of Frame 1 as seen in 0”),   
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Thus with respect to Frame {0}, the translational velocity Jacobians (i.e., the matrices that 

encode the differential relationship between joint velocities and workspace tip velocities) are 

found by direct differentiation of the position vectors 
0
P1 and 

0
P2. 
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The rotational velocity Jacobian matrices with respect to Frame {0} are given by 
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As both joints are revolute (ε=0), these matrices are    
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, and after some substitution  and simplification we have 
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  where I is about the z-axis (I1=I{zz}1 and I2=I{zz}2) 

Finally, the mass matrix, M is 
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The Centrifugal and Coriolis Matrix v is found directly by recalling Christoffel symbols 
(please review Christoffel symbols from dynamics and the mass notation from the previous page) 
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and the Coriolis matrix can be written as  
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Summing this together gives  
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The next factor to consider is gravity.   

While the problem does not specify a gravity direction, we assume it is acting parallel to the 

y-axis.  This gives  0 0g g .  (Note that if we latter wish to assume that gravity is acting along the 

z-axis (into the page), this could be treated by setting  0 0 g g ) 

With respect to Frame {0}, the gravity vector can be calculated as  
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However, we have to be careful because the gravity acts at the mass center (which is 

represented by the notation C1 and C2).  Again, recall that we have l1=a1/2 and l2=a2/2 

Given the structure of the problem, the Jacbobians are be determined by inspection.   

Thus, 
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The Equations of Motion can be found by putting these terms together to give 
(for review see also Lecture 4, Slide 30 and Lecture 5, Slide 7) 
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Challenge Question: 

Inverse Kinematics & Trajectory Generation  

A small humanoid robot is being programmed to place a hat on its head.  The objective is 

to place the hat in the position shown by the dashed outline in the figure below.   Assume 

that the arm is composed of 3 revolute joints and is constrained to move in the plane of 

the page.  The arm consists of 3 links with dimensions:  L1=0.4, L2=0.3, L3=0.1. 

 

In order to place the hat on its head, assume that we must place the edge of the hat brim 

at a location 0.5m above its shoulder joint.   The hat brim should be in a horizontal 

position and is gripped at its edge by the hand and is aligned with the last link of the arm.  

Please calculate/plot valid workspace (e.g., from the frame located at the right-most end 

of the brim where the robot is grasping it) and joint trajectories to place the hat correctly.    

 

 

 


