## METR4202 -- Robotics Tutorial 4 - Week 4: Trajectory Generation \& Motion Planning

Reading
Please read/review chapter 9 of Robotics, Vision and Control.

## Questions



Figure 1: Two DOF Robot manipulator

## 1. Write the full equation of motion for the 2 R arm above

(i.e., $\tau_{1}$ and $\tau_{2}$ as a function of $\theta_{1}$ and $\theta_{2}$ and its derivatives)

Start with the masses of links: $m_{1}$ and $m_{2}$, to get the Mass Matrix recall (lecture 5)
$M=\sum_{i=1}^{N}\left(m_{i} J_{v_{i}}^{T} J_{v_{i}}+J_{\omega_{i}}^{T} I_{C_{i}} J_{\omega_{i}}\right)$
$M=m_{1} J_{v_{1}}^{T} J_{v_{1}}+J_{\omega_{1}}^{T} I_{1} J_{\omega_{1}}+m_{2} J_{v_{2}}^{T} J_{v_{2}}+J_{\omega_{2}}^{T} I_{2} J_{\omega_{2}}$
Note that:
$m_{i}=$ the mass of the $\mathrm{i}^{\text {th }}$ link
$m_{i j}=$ the ij element of the mass matrix
$m_{i j k} \equiv \frac{\partial m_{i j}}{\partial q_{k}}$
Note this is with respect to the configuration variable, not time.
On that subject, the derivative with respect to time would be: $\frac{d}{d t} m_{i j}=\sum_{k=1}^{N} m_{i j k} \dot{q}_{k}$

The center of mass of each link is at the joint center, this $1_{1} \equiv \mathrm{a}_{1} / 2$ and $\mathrm{l}_{2} \equiv \mathrm{a}_{2} / 2$
To compute the Jacobians ( $\mathrm{J}_{\mathrm{v}}$ and $\mathrm{J}_{\omega}$ ), we need to calculate the forward kinematics.

Recall that the position vectors (Lec 3, Slide 34) for a 2 R arm are:
${ }^{0} P_{1}=\left[\begin{array}{c}a_{1} C_{1} \\ a_{1} S_{1} \\ 0\end{array}\right]$ (this reads as "Position of Frame 1 as seen in 0 "), ${ }^{0} P_{2}=\left[\begin{array}{c}a_{1} C_{1}+a_{2} C_{12} \\ a_{1} S_{2}+a_{2} S_{12} \\ 0\end{array}\right]$
Thus with respect to Frame $\{0\}$, the translational velocity Jacobians (i.e., the matrices that encode the differential relationship between joint velocities and workspace tip velocities) are found by direct differentiation of the position vectors ${ }^{0} \mathbf{P}_{1}$ and ${ }^{0} \mathbf{P}_{2}$.

$$
\begin{aligned}
& { }^{0} J_{v_{1}}=\left[\begin{array}{cc}
-a_{1} S_{1} & 0 \\
a_{1} C_{1} & 0 \\
0 & 0
\end{array}\right],{ }^{0} J_{v_{2}}=\left[\begin{array}{cc}
-a_{1} S_{1}-a_{1} S_{12} & -a_{2} S_{12} \\
a_{1} C_{1}+a_{2} C_{12} & a_{2} C_{12} \\
0 & 0
\end{array}\right] \\
& \rightarrow m_{1} J_{v_{1}}^{T} J_{v_{1}}=\left[\begin{array}{cc}
m_{1} a_{1}^{2} & 0 \\
0 & 0
\end{array}\right], m_{2} J_{v_{2}}^{T} J_{v_{2}}=\left[\begin{array}{cc}
m_{2}\left(a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} C_{2}\right) & m_{2}\left(a_{2}^{2}+a_{1} a_{2} C_{2}\right) \\
m_{2}\left(a_{2}^{2}+a_{1} a_{2} C_{2}\right) & m_{2} a_{2}^{2}
\end{array}\right]
\end{aligned}
$$

The rotational velocity Jacobian matrices with respect to Frame $\{0\}$ are given by $J_{\omega_{1}}=\left[\begin{array}{ll}\bar{\varepsilon}_{1} \mathbf{Z}_{1} & \mathbf{0}\end{array}\right], J_{\omega_{2}}=\left[\begin{array}{ll}\bar{\varepsilon}_{1} \mathbf{Z}_{1} & \bar{\varepsilon}_{2} \mathbf{z}_{2}\end{array}\right]$
As both joints are revolute ( $\varepsilon=0$ ), these matrices are $J_{\omega_{1}}=\left[\begin{array}{ll}\mathbf{z}_{1} & \mathbf{0}\end{array}\right], J_{\omega_{2}}=\left[\begin{array}{ll}\mathbf{z}_{1} & \mathbf{z}_{2}\end{array}\right]$
Thus, $J_{\omega_{1}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right], J_{\omega_{2}}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\right]$, and after some substitution and simplification we have
$J_{\omega_{1}}^{T} I_{1} J_{\omega_{1}}=\left[\begin{array}{cc}I_{1} & 0 \\ 0 & 0\end{array}\right], J_{\omega_{2}}^{T} I_{2} J_{\omega_{2}}=\left[\begin{array}{cc}I_{2} & I_{2} \\ I_{2} & I_{2}\end{array}\right]$ where I is about the $z$-axis $\left(\mathrm{I}_{1}=\mathrm{I}_{\{z z\} 1}\right.$ and $\left.\mathrm{I}_{2}=\mathrm{I}_{\{z z\} 2}\right)$
Finally, the mass matrix, M is

$$
M=\left[\begin{array}{cc}
m_{1} a_{1}^{2}+I_{1}+m_{2}\left(a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} C_{2}\right)+I_{2} & m_{2}\left(a_{2}^{2}+a_{1} a_{2} C_{2}\right)+I_{2} \\
m_{2}\left(a_{2}^{2}+a_{1} a_{2} C_{2}\right)+I_{2} & m_{2} a_{2}^{2}+I_{2}
\end{array}\right]
$$

The Centrifugal and Coriolis Matrix $\mathbf{v}$ is found directly by recalling Christoffel symbols (please review Christoffel symbols from dynamics and the mass notation from the previous page)

$$
b_{i, j k}=\frac{1}{2}\left(m_{i j k}+m_{i k j}-m_{j k i}\right) \text { and with } b_{i i i}=b_{i j i}=0,
$$

the Centrifugal matrix becomes

$$
B=\left[\begin{array}{c}
2 b_{112} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} m_{112} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}\left(\frac{\partial m_{11}}{\partial \theta_{2}}\right) \\
0
\end{array}\right]=\left[\begin{array}{c}
-m_{2} a_{1} a_{2} S_{2} \\
0
\end{array}\right],
$$

and the Coriolis matrix can be written as

$$
C=\left[\begin{array}{cc}
0 & b_{122} \\
b_{211} & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & m_{122} \\
-\frac{1}{2} m_{112} & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & \left(\frac{\partial m_{12}}{\partial \theta_{2}}\right) \\
-\frac{1}{2}\left(\frac{\partial m_{11}}{\partial \theta_{2}}\right) & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -m_{2} a_{1} a_{2} S_{2} \\
m_{2} a_{1} a_{2} S_{2} & 0
\end{array}\right]
$$

Summing this together gives
$V=\left[\begin{array}{c}-m_{2} a_{1} a_{2} S_{2} \\ 0\end{array}\right]\left(\dot{\theta}_{1} \dot{\theta}_{2}\right)+\left[\begin{array}{cc}0 & -m_{2} a_{1} a_{2} S_{2} \\ m_{2} a_{1} a_{2} S_{2} & 0\end{array}\right]\left[\begin{array}{l}\dot{\theta}_{1}^{2} \\ \dot{\theta}_{2}^{2}\end{array}\right]$

The next factor to consider is gravity.
While the problem does not specify a gravity direction, we assume it is acting parallel to the $y$-axis. This gives $\mathbf{g}=\left[\begin{array}{lll}0 & -g & 0\end{array}\right]$. (Note that if we latter wish to assume that gravity is acting along the $z$-axis (into the page), this could be treated by setting $\mathbf{g}=\left[\begin{array}{ccc}0 & 0 & -g\end{array}\right]$ )
With respect to Frame $\{0\}$, the gravity vector can be calculated as

$$
\mathbf{G}=-\left[\boldsymbol{J}_{v_{C 1}}^{T} m_{C 1} \mathbf{g}+J_{v_{C 2}}^{T} m_{C 2} \mathbf{g}\right]
$$

However, we have to be careful because the gravity acts at the mass center (which is represented by the notation C1 and C2). Again, recall that we have $\mathrm{l}_{1}=\mathrm{a}_{1} / 2$ and $\mathrm{l}_{2}=\mathrm{a}_{2} / 2$ Given the structure of the problem, the Jacbobians are be determined by inspection. Thus,

$$
\begin{aligned}
& { }^{0} G=-\left[\begin{array}{ccc}
-l_{1} S_{1} & l_{1} C_{1} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
-m_{1} g \\
0
\end{array}\right]-\left[\begin{array}{ccc}
-a_{1} S_{1}-l_{2} S_{12} & a_{1} C_{1}+l_{2} C_{12} & 0 \\
-l_{2} S_{12} & l_{2} C_{12} & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
-m_{2} g \\
0
\end{array}\right] \\
& { }^{0} G=\left[\begin{array}{c}
\left(m_{1} l_{1}+m_{2} a_{1}\right) C_{1}+m_{2} l_{2} C_{12} \\
m_{2} l_{2} C_{12}
\end{array}\right](g)=\left[\begin{array}{c}
\left(\frac{1}{2} m_{1}+m_{2}\right) a_{1} C_{1}+\frac{1}{2} m_{2} a_{2} C_{12} \\
\frac{1}{2} m_{2} a_{2} C_{12}
\end{array}\right](g)
\end{aligned}
$$

The Equations of Motion can be found by putting these terms together to give (for review see also Lecture 4, Slide 30 and Lecture 5, Slide 7)

$$
\begin{aligned}
& \boldsymbol{\tau}=M(\theta) \ddot{\boldsymbol{\theta}}+\mathbf{v}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}})+\mathbf{g}(\boldsymbol{\theta}) \\
& {\left[\begin{array}{c}
\tau_{1} \\
\tau_{2}
\end{array}\right]=\left[\begin{array}{cc}
m_{1} a_{1}^{2}+I_{1}+m_{2}\left(a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} C_{2}\right)+I_{2} & m_{2}\left(a_{2}^{2}+a_{1} a_{2} C_{2}\right)+I_{2} \\
m_{2}\left(a_{2}^{2}+a_{1} a_{2} C_{2}\right)+I_{2} & m_{2} a_{2}^{2}+I_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]} \\
& +\left(\dot{\theta}_{1} \dot{\theta}_{2}\right)\left[\begin{array}{cc}
-m_{2} a_{1} a_{2} S_{2} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & -m_{2} a_{1} a_{2} S_{2} \\
m_{2} a_{1} a_{2} S_{2} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\theta}_{1}^{2} \\
\dot{\theta}_{2}^{2}
\end{array}\right]+(g)\left[\begin{array}{c}
\left(\frac{1}{2} m_{1}+m_{2}\right) a_{1} C_{1}+\frac{1}{2} m_{2} a_{2} C_{12} \\
\frac{1}{2} m_{2} a_{2} C_{12}
\end{array}\right]
\end{aligned}
$$

## Challenge Question:

Inverse Kinematics \& Trajectory Generation
A small humanoid robot is being programmed to place a hat on its head. The objective is to place the hat in the position shown by the dashed outline in the figure below. Assume that the arm is composed of 3 revolute joints and is constrained to move in the plane of the page. The arm consists of 3 links with dimensions: $L_{1}=0.4, L_{2}=0.3, L_{3}=0.1$.

In order to place the hat on its head, assume that we must place the edge of the hat brim at a location 0.5 m above its shoulder joint. The hat brim should be in a horizontal position and is gripped at its edge by the hand and is aligned with the last link of the arm. Please calculate/plot valid workspace (e.g., from the frame located at the right-most end of the brim where the robot is grasping it) and joint trajectories to place the hat correctly.


