METR4202 -- Robotics Tutorial 3 – Week 3: Forward Kinematics

Solutions

The objective of this tutorial is to explore homogenous transformations. The MATLAB robotics toolbox developed by Peter Corke might be a useful aid¹.

Reading

Please read/review Please read/review chapter 7 of Robotics, Vision and Control.

Review

Useful commands:

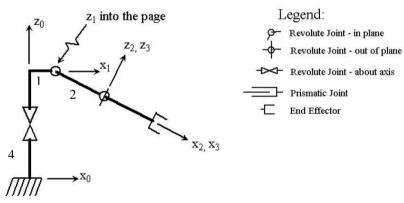
```
Transl, trotx, troty, trotz, rotx, roty, rotz, tr2eul, DHFactor
```

Familiarise yourself with the link class

Questions

1. For the robot shown in the following figure, find the table of DH parameters according to "Standard" DH conventions.

(**note**: you are allowed to move the initial frame to fit convention(s))



Answers:

Link	FromFrame	^{To} Frame	$ heta_i$	d_i	a_i	α_{i}
1	0	1	θ1*	4	1	-90°
2	1	2	θ2*	0	2	90°
3	2	3	θ3*	0	0	0

→ Note that the position of the end effector (the gripper) may be viewed as a position vector ($\mathbf{P}^{\text{end}_effector}$) in Frame 3.

¹ <u>http://petercorke.com/Robotics_Toolbox.html</u>

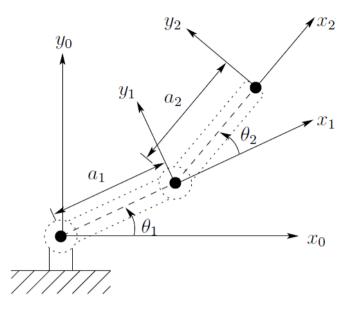


Figure 1: Two-link Planar Robot

a.) Determine the joint angles of the two-link planar arm.

The joint space of the robot is (θ_1, θ_2) .

The forward kinematics may be solved directly using the vector-loop method or somewhat more mechanically using the DH convention (see slides 24 and 42 of Lecture 3). This gives: $(p_x, p_y) = (a_1c\theta_1 + a_2c\theta_{12}, a_1s\theta_1 + a_2s\theta_{12})$

The inverse kinematics involves solving the above simultaneous equation for θ_1 and θ_2 . A geometric way of solving this is to observe that the distance from $\{0\}$ to $\{2\}$ is independent of θ_1 . Thus, sum of squares gives:

$$p_x^2 + p_y^2 = a_1^2 + a_2^2 + 2a_1a_2c\theta_2$$
$$\theta_2 = \arccos\left(\frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1a_2}\right)$$

If θ^* is an answer to the above, the, in general, $-\theta^*$ will also be an answer. This is corresponds to the "elbow up" and "elbow down" configurations. Substituting this back into the kinematic equations gives:

$$p_{x} = (a_{1} + a_{2}c\theta_{2})c\theta_{1} - (a_{2}s\theta_{2})s\theta_{1}, p_{y} = (a_{2}s\theta_{2})c\theta_{1} + (a_{1} + a_{2}c\theta_{2})s\theta_{1}$$

$$c\theta_{1} = \frac{p_{x}(a_{1} + a_{2}c\theta_{2}) + p_{y}(a_{2}s\theta_{2})}{a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}c\theta_{2}}$$

$$s\theta_{1} = \frac{-p_{x}(a_{2}s\theta_{2}) + p_{y}(a_{1} + a_{2}c\theta_{2})}{a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}c\theta_{2}}$$

$$\theta_{1} = \operatorname{Atan2}(s\theta_{1}, c\theta_{1})$$

If a1 = 2 and a2 = 3 what are the joint angles corresponding to an end effector position of (x,y)=(1, 1).

 $\theta_1 = 167.028^\circ, \theta_2 = -156.44^\circ$ (Elbow down) Or $\theta_1 = -77.028^\circ, \theta_2 = 156.44^\circ$ (Elbow up)

Qsol =

2.9152 -2.7305