METR4202 -- Robotics
 Tutorial 2 - Week 2: Homogeneous Coordinates

The objective of this tutorial is to explore homogenous transformations. The MATLAB robotics toolbox developed by Peter Corke might be a useful aid ${ }^{1}$.

Please login to the Platypus system and create an account. Please answer the tutorial by Thursday night via the Platypus system for tutor and peer feedback.

Reading

Please read/review Section 2.4 of Multiple View Geometry in Computer Vision (see attached). (from R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2004)

Review

The Homogeneous Transformations functions in the toolbox are useful.

1. Try the Transformations module of rtdemo for a demonstration of these function
2. Look at rpy2tr and tr2rpy (doc rpy2tr and doc tr2rpy)
3. Look at the source of these functions (open rpy2tr and open tr2rpy). Does tr2rpy exploit the redundancies inherent in a rotation matrix?

Questions

1. Calculate the homogeneous transformation matrix ${ }_{B}^{A} T$ given the translations $\left({ }^{A} \boldsymbol{P}_{B}\right)$ and the roll-pitch-yaw rotations (as $\left.\alpha-\beta-\gamma\right)$ applied in the order yaw, pitch, roll.
a. $\alpha=10^{\circ}, \beta=20^{\circ}, \gamma=30^{\circ},{ }^{A} \boldsymbol{P}_{B}=\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right\}^{\mathbf{T}}$
b. $\alpha=10^{\circ}, \beta=30^{\circ}, \gamma=30^{\circ},{ }^{A} \boldsymbol{P}_{B}=\left\{\begin{array}{lll}3 & 0 & 0\end{array}\right\}^{\mathbf{T}}$
2. Compare the output of: $\alpha=90^{\circ}, \beta=180^{\circ}, \gamma=-90^{\circ},{ }^{A} \boldsymbol{P}_{B}=\left\{\begin{array}{lll}0 & 0 & 1\end{array}\right\}^{\mathbf{T}}$
[10 Points] and $\alpha=90^{\circ}, \beta=180^{\circ}, \gamma=270^{\circ},{ }^{A} \boldsymbol{P}_{B}=\left\{\begin{array}{lll}0 & 0 & 1\end{array}\right\}^{\mathbf{T}}$
3. Given the following 3×3 rotation matrices:

$$
\begin{gathered}
R_{1}=\left[\begin{array}{ccc}
0.7500 & -0.4330 & -0.5000 \\
0.2165 & 0.8750 & -0.4330 \\
0.6250 & 0.2165 & 0.7500
\end{array}\right], R_{2}=\left[\begin{array}{ccc}
0.6399 & -0.2351 & -0.6159 \\
0.2860 & 0.5854 & -0.4970 \\
0.3221 & 0.2488 & 0.7132
\end{array}\right], \\
R_{3}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0.8660 & 0.5000 & 0 \\
-0.500 & 0.8660 & 0
\end{array}\right], R_{4}=\left[\begin{array}{ccc}
0.0238 & 0.1524 & 0.9880 \\
-0.3030 & -0.9407 & 0.1524 \\
0.9527 & -0.3030 & 0.0238
\end{array}\right]
\end{gathered}
$$

a. Are these (within practical numerical limits) valid rotation matrices? Why?
b. If yes, determine the Roll, Pitch, and Yaw that define each matrix. Do you believe their values?

[^0]
[^0]: ${ }^{1}$ http://petercorke.com/Robotics_Toolbox.html

