Robot Sensing & Perception

“Seeing is forgetting the name of what one sees”

– L. Weschler

METR 4202: Advanced Control & Robotics

Dr Surya Singh – Lecture # 6

September 3, 2014

metr4202@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~metr4202/

© 2014 School of Information Technology and Electrical Engineering at the University of Queensland

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture (W: 11:10-12:40, 24-402)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Jul</td>
<td>Introduction</td>
</tr>
<tr>
<td>6-Aug</td>
<td>Representing Position & Orientation & State (Frames, Transformation Matrices & Affine Transformations)</td>
</tr>
<tr>
<td>13-Aug</td>
<td>Robot Kinematics (& Ekka Day)</td>
</tr>
<tr>
<td>20-Aug</td>
<td>Robot Dynamics & Control</td>
</tr>
<tr>
<td>27-Aug</td>
<td>Robot Motion</td>
</tr>
<tr>
<td>3-Sep</td>
<td>Sensing & Perception</td>
</tr>
<tr>
<td>10-Sep</td>
<td>Multiple View Geometry (Computer Vision)</td>
</tr>
<tr>
<td>17-Sep</td>
<td>Navigation & Localization (+ Prof. M. Srinivasan)</td>
</tr>
<tr>
<td>24-Sep</td>
<td>Motion Planning + Control</td>
</tr>
<tr>
<td>1-Oct</td>
<td>Study break</td>
</tr>
<tr>
<td>8-Oct</td>
<td>State-Space Modelling</td>
</tr>
<tr>
<td>15-Oct</td>
<td>Shaping the Dynamic Response</td>
</tr>
<tr>
<td>22-Oct</td>
<td>Linear Observers & LQR</td>
</tr>
<tr>
<td>29-Oct</td>
<td>Applications in Industry & Course Review</td>
</tr>
</tbody>
</table>

3 September 2014 - METR 4202: Robotics
Quick Outline

1. **Perception → Camera Sensors**
 1. Image Formation
 → “Computational Photography”
 2. Calibration
 3. Feature extraction
 4. Stereopsis and depth
 5. Optical flow
Sensor Information

- Laser
- Vision/Cameras
- GPS

Mapping: Indoor robots
Cameras

Perception

- Making Sense from Sensors

http://www.michaelbach.de/ot/mot_rotsnake/index.html
Perception

• Perception is about understanding the image for informing latter robot / control action

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

3 September 2014 - METR 4202: Robotics
Image Formation: Lens Optics

\[
\frac{1}{z_0} + \frac{1}{z_1} = \frac{1}{f}
\]

Sec. 2.2 from Szeliski, *Computer Vision: Algorithms and Applications*

Image Formation:
Lens Optics (Chromatic Aberration & Vignetting)

- Chromatic Aberration:

- Vignetting:

\[E = L \frac{\pi}{4} \left(\frac{d}{f} \right)^2 \cos^4 \alpha \]

Sec. 2.2 from Szeliski, *Computer Vision: Algorithms and Applications*
Image Formation:
Lens Optics (Aperture / Depth of Field)

\[N = \frac{f}{\#} = \frac{f}{d} \]

Image Formation – Single View Geometry

Corke, Ch. 11
Image Formation – Single View Geometry

Camera Projection Matrix

\[
\begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix} \mapsto \begin{pmatrix}
fx + zp_x \\
fy + zp_y \\
z
\end{pmatrix} = \begin{bmatrix}
f & p_x & 0 \\
f & p_y & 0 \\
1 & 0 & 1
\end{bmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
1
\end{pmatrix}
\]

- \(x\) = Image point
- \(X\) = World point
- \(K\) = Camera Calibration Matrix

Perspective Camera as:

\[
P = K[R \mid t]
\]

where: \(P\) is 3×4 and of **rank 3**
Planar Projective Transformations

• Perspective projection of a plane
 – lots of names for this:
 • homography, colineation, planar projective map
 – Easily modeled using homogeneous coordinates

To apply a homography H

• compute $p' = Hp$
• $p'' = p'/s$ normalize by dividing by third component
Transformations

- **Forward Warp**

  ```
  procedure forwardWarp(f, h, out g):
    For every pixel \( x \) in \( f(x) \)
    1. Compute the destination location \( x' = h(x) \).
    2. Copy the pixel \( f(x) \) to \( g(x') \).
  ```

- **Inverse Warp**

  ```
  procedure inverseWarp(f, h, out g):
    For every pixel \( x' \) in \( g(x') \)
    1. Compute the source location \( x = h(x') \).
    2. Resample \( f(x) \) at location \( x \) and copy to \( g(x') \).
  ```

Sec. 3.6 from Szeliski, *Computer Vision: Algorithms and Applications*

Transformations

- \(x' \): New Image & \(x \): Old Image

- **Euclidean:** (Distances preserved)
 \[x' = \begin{bmatrix} R & t \end{bmatrix} x \]

- **Similarity (Scaled Rotation):** (Angles preserved)
 \[x' = \begin{bmatrix} sR & t \end{bmatrix} x \]

Fig. 2.4 from Szeliski, *Computer Vision: Algorithms and Applications*
Transformations [2]

- **Affine**: (|| lines remain ||)

- **Projective**: (straight lines preserved)

H: Homogenous 3x3 Matrix

\[
x' = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} x
\]

\[
x' = \mathbf{H} x
\]

\[
x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}
\]

\[
y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}
\]

Fig. 2.4 from Szeliski, Computer Vision: Algorithms and Applications

2-D Transformations

- x’ = point in the new (or 2nd) image
- x = point in the old image

- **Translation** x’ = x + t
- **Rotation** x’ = R x + t
- **Similarity** x’ = sR x + t
- **Affine** x’ = A x
- **Projective** x’ = A x

here, x is an inhomogeneous pt (2-vector)

x’ is a homogeneous point
2-D Transformations

<table>
<thead>
<tr>
<th>Name</th>
<th>Matrix</th>
<th># D.O.F.</th>
<th>Preserves:</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$[I \ t]_{2\times 3}$</td>
<td>2</td>
<td>orientation + \ldots</td>
<td>☐</td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$[R \ t]_{2\times 3}$</td>
<td>3</td>
<td>lengths + \ldots</td>
<td>☑</td>
</tr>
<tr>
<td>similarity</td>
<td>$[sR \ t]_{2\times 3}$</td>
<td>4</td>
<td>angles + \ldots</td>
<td>☑</td>
</tr>
<tr>
<td>affine</td>
<td>$[A]_{2\times 3}$</td>
<td>6</td>
<td>parallelism + \ldots</td>
<td>☐</td>
</tr>
<tr>
<td>projective</td>
<td>$[\tilde{H}]_{3\times 3}$</td>
<td>8</td>
<td>straight lines</td>
<td>☐</td>
</tr>
</tbody>
</table>

3D Transformations

<table>
<thead>
<tr>
<th>Name</th>
<th>Matrix</th>
<th># D.O.F.</th>
<th>Preserves:</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$[I \ t]_{3\times 4}$</td>
<td>3</td>
<td>orientation + \ldots</td>
<td>☐</td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$[R \ t]_{3\times 4}$</td>
<td>6</td>
<td>lengths + \ldots</td>
<td>☑</td>
</tr>
<tr>
<td>similarity</td>
<td>$[sR \ t]_{3\times 4}$</td>
<td>7</td>
<td>angles + \ldots</td>
<td>☑</td>
</tr>
<tr>
<td>affine</td>
<td>$[A]_{3\times 4}$</td>
<td>12</td>
<td>parallelism + \ldots</td>
<td>☐</td>
</tr>
<tr>
<td>projective</td>
<td>$[\tilde{H}]_{4\times 4}$</td>
<td>15</td>
<td>straight lines</td>
<td>☐</td>
</tr>
</tbody>
</table>

Slide from Szeliski, *Computer Vision: Algorithms and Applications*
Image Rectification

To unwarp (rectify) an image

• solve for H given p'' and p
• solve equations of the form: $sp'' = Hp$
 – linear in unknowns: s and coefficients of H
 – need at least 4 points

Slide from Szeliski, *Computer Vision: Algorithms and Applications*

3D Projective Geometry

• These concepts generalize naturally to 3D
 – Homogeneous coordinates
 • Projective 3D points have four coords: $P = (X,Y,Z,W)$
 – Duality
 • A plane L is also represented by a 4-vector
 • Points and planes are dual in 3D: $L P = 0$
 – Projective transformations
 • Represented by 4x4 matrices T: $P' = TP$, $L' = L T^{-1}$
 – Lines are a special case…

Slide from Szeliski, *Computer Vision: Algorithms and Applications*
3D → 2D Perspective Projection
(Image Formation Equations)

\[
\begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix} = \begin{bmatrix} R \end{bmatrix}_{3\times3} \begin{bmatrix} X \\
Y \\
Z \end{bmatrix} + \begin{bmatrix} t \\
t \\
t \end{bmatrix}
\]

\[
\begin{bmatrix} u \\
v \\
1 \end{bmatrix} \sim \begin{bmatrix} U \\
V \\
W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\
0 & f & v_c \\
0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\
Y_c \\
Z_c \end{bmatrix}
\]

It’s useful to decompose \(\Pi \) into \(T \rightarrow R \rightarrow \text{project} \rightarrow A \)

\[
\Pi = \begin{bmatrix}
s_x & 0 & t_x & 1 & 0 & 0 \\
0 & s_y & t_y & 0 & 1 & 0 \\
0 & 0 & 0 & 1/f & 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix}
R_{3\times3} & 0_{3\times1} & I_{3\times3} & T_{3\times1} \\
0_{1\times3} & 1 & 0_{1\times3} & 1 \end{bmatrix}
\]

* Matrix Projection (camera matrix):

\[
P = \begin{bmatrix} sx \\
sy \\
s \\
\end{bmatrix} = \begin{bmatrix} \ast & \ast & \ast & \ast \\
\end{bmatrix} \begin{bmatrix} X \\
Y \\
Z \\
1 \end{bmatrix} = \Pi P
\]
Calibration matrix

- Is this form of K good enough?
- non-square pixels (digital video)
- skew
- radial distortion

$$
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix}
\sim
\begin{bmatrix}
f & 0 & u_c \\
0 & f & v_c \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_c \\
Y_c \\
Z_c
\end{bmatrix} = K \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
$$

From Szeliski, *Computer Vision: Algorithms and Applications*

Calibration

See: *Camera Calibration Toolbox for Matlab*
(http://www.vision.caltech.edu/bouguetj/calib_doc/)

- **Intrinsic: Internal Parameters**
 - **Focal length**: The focal length in pixels.
 - **Principal point**: The principal point
 - **Skew coefficient**:
 The skew coefficient defining the angle between the x and y pixel axes.
 - **Distortions**: The image distortion coefficients (radial and tangential distortions)
 (typically two quadratic functions)

- **Extrinsics: Where the Camera (image plane) is placed:**
 - **Rotations**: A set of 3x3 rotation matrices for each image
 - **Translations**: A set of 3x1 translation vectors for each image
Camera calibration

- Determine camera parameters from known 3D points or calibration object(s)
- Internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- External or extrinsic (pose) parameters: where is the camera?
- How can we do this?

Camera calibration – approaches

- Possible approaches:
 - linear regression (least squares)
 - non-linear optimization
 - vanishing points
 - multiple planar patterns
 - panoramas (rotational motion)
Measurements on Planes
(You can not just add a tape measure!)

Approach: unwarp then measure

Projection Models
• Orthographic

\[
\Pi = \begin{bmatrix}
 i_x & i_y & i_z & 1 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

• Weak Perspective

\[
\Pi = \begin{bmatrix}
 i_x & i_y & i_z & 1 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

• Affine

\[
\Pi = \begin{bmatrix}
 i_x & i_y & i_z & 1 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

• Perspective

\[
\Pi = \begin{bmatrix}
 * & * & * & * \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

• Projective

\[
\Pi = \begin{bmatrix}
 * & * & * & * \\
 * & * & * & *
\end{bmatrix}
\]

Slide from Szeliski, Computer Vision: Algorithms and Applications
Properties of Projection

- Preserves
 - Lines and conics
 - Incidence
 - Invariants (cross-ratio)

- Does not preserve
 - Lengths
 - Angles
 - Parallelism

The Projective Plane

- Why do we need homogeneous coordinates?
 - Represent points at infinity, homographies, perspective projection, multi-view relationships

- What is the geometric intuition?
 - A point in the image is a ray in projective space

 - Each point \((x, y)\) on the plane is represented by a ray \((sx, sy, s)\)
 - all points on the ray are equivalent: \((x, y, 1) \equiv (sx, sy, s)\)

Slide from Szeliski, Computer Vision: Algorithms and Applications
Projective Lines

- What is a line in projective space?

 - A line is a plane of rays through origin
 - All rays (x,y,z) satisfying: $ax + by + cz = 0$

 \[
 \begin{bmatrix}
 a \\
 b \\
 c \\
 \end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 \end{bmatrix} = 0
 \]

 - A line is represented as a homogeneous 3-vector l

Point and Line Duality

- A line l is a homogeneous 3-vector (a ray)
- It is \perp to every point (ray) p on the line: $l^T p = 0$

 \[
 \begin{align*}
 l^T p &= 0 \\
 l &= p_1 \times p_2 \\
 \end{align*}
 \]

 - What is the line l spanned by rays p_1 and p_2?
 - l is \perp to p_1 and p_2 \Rightarrow $l = p_1 \times p_2$ (l is the plane normal)

 - What is the intersection of two lines l_1 and l_2?
 - p is \perp to l_1 and l_2 \Rightarrow $p = l_1 \times l_2$

 - Points and lines are dual in projective space
 - Every property of points also applies to lines
Ideal points and lines

- Ideal point ("point at infinity")
 - $p \equiv (x, y, 0)$ – parallel to image plane
 - It has infinite image coordinates

Line at infinity

- $l_\infty \equiv (0, 0, 1)$ – parallel to image plane
- Contains all ideal points

Vanishing Points

- Vanishing point
 - projection of a point at infinity
 - whiteboard
capture,
architecture,…
Fun With Vanishing Points

Vanishing Points (2D)

Slide from Szeliski: *Computer Vision: Algorithms and Applications*

METR 4202: Robotics

3 September 2014
Vanishing Points

- Properties
 - Any two parallel lines have the same vanishing point
 - The ray from C through v point is parallel to the lines
 - An image may have more than one vanishing point

![Diagram of vanishing points](image)

Vanishing Lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line

![Diagram of vanishing lines](image)
Two-View Geometry: Epipolar Plane

- **Epipole**: the point of intersection of the line joining the camera centres (the baseline) with the image plane. Equivalently, the epipole is the image in one view of the camera centre of the other view.

- **Epipolar plane** is a plane containing the baseline. There is a one-parameter family (a pencil) of epipolar planes.

- **Epipolar line** is the intersection of an epipolar plane with the image plane. All epipolar lines intersect at the epipole. An epipolar plane intersects the left and right image planes in epipolar lines, and defines the correspondence between the lines.

Two-frame methods

- Two main variants:
 - Calibrated: “Essential matrix” E
 use ray directions (x, x̂)
 - Uncalibrated: “Fundamental matrix” F

- [Hartley & Zisserman 2000]
Fundamental matrix

- Camera calibrations are unknown
- \(x' F x = 0 \) with \(F = [e] \times H = K'[t] \times R K^{-1} \)
- Solve for \(F \) using least squares (SVD)
 - re-scale \((x_i, x'_i)\) so that \(|x_i| \approx 1/2\) [Hartley]
- \(e \) (epipole) is still the least singular vector of \(F \)
- \(H \) obtained from the other two s.v.s
- “plane + parallax” (projective) reconstruction
- use self-calibration to determine \(K \) [Pollefeys]

From Szeliski, *Computer Vision: Algorithms and Applications*

Essential matrix

- Co-planarity constraint:
 - \(x' \approx R x + t \)
 - \([t] \times x' \approx [t] \times R x \)
 - \(x' [t] \times x' \approx x' [t] \times R x \)
 - \(x' E x = 0 \) with \(E = [t] \times R \)
- Solve for \(E \) using least squares (SVL)
 - \(t \) is the least singular vector of \(E \)
 - \(R \) obtained from the other two s.v.s

From Szeliski, *Computer Vision: Algorithms and Applications*
Stereo: Epipolar geometry

- Match features along epipolar lines

![Epipolar geometry diagram](image)

Stereo: epipolar geometry

- for two images (or images with collinear camera centers), can find epipolar lines
- epipolar lines are the projection of the pencil of planes passing through the centers
- Rectification: warping the input images (perspective transformation) so that epipolar lines are horizontal
Fundamental Matrix

- The fundamental matrix is the algebraic representation of epipolar geometry.

![Diagram](image)

Fig. 9.5. A point \(\mathbf{x} \) in one image is transferred via the plane \(\pi \) to a matching point \(\mathbf{x}' \) in the second image. The epipolar line through \(\mathbf{x}' \) is obtained by joining \(\mathbf{x}' \) to the epipole \(\mathbf{e}' \). In symbols one may write \(\mathbf{x}' = \mathbf{H}_w \mathbf{x} \) and \(\mathbf{l}' = [\mathbf{e'}] \times \mathbf{x}' = [\mathbf{e'}] \times \mathbf{H}_w \mathbf{x} = \mathbf{F} \mathbf{x} \) where \(\mathbf{F} = [\mathbf{e'}] \times \mathbf{H}_w \) is the fundamental matrix.

Fundamental Matrix Example

- Suppose the camera matrices are those of a calibrated stereo rig with the world origin at the first camera

\[
P = K[I \mid 0] \quad P' = K'[R \mid t].
\]

- Then:

\[
P^+ = \begin{bmatrix} K^{-1} & 0 \\ 0^T & 1 \end{bmatrix} \quad C = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

- Epipoles are at:

\[
\mathbf{e} = P \begin{pmatrix} -R^T t \\ 1 \end{pmatrix} = KR^T t \quad \mathbf{e}' = P' \begin{pmatrix} 0 \\ 1 \end{pmatrix} = K't.
\]

\[\therefore F = [\mathbf{e'}] \times K'RK^{-1} = K'^{-T}t \times RK^{-1} = K'^{-T}[R^T t] \times K^{-1} = K'^{-T}RK^T [\mathbf{e}]_\times\]
Summary of fundamental matrix properties

- **F** is a rank 2 homogeneous matrix with 7 degrees of freedom.
- **Point correspondence**: If \(x \) and \(x' \) are corresponding image points, then \(x^T F x = 0 \).
- **Epipolar lines**:
 - \(l' = F x \) is the epipolar line corresponding to \(x \).
 - \(l = F^T x' \) is the epipolar line corresponding to \(x' \).
- **Epipoles**:
 - \(P_0 = 0 \).
 - \(F^T e' = 0 \).
- **Computation from camera matrices** \(P, P' \):
 - General cameras, \(F = [e']^T P P^+ \), where \(P^+ \) is the pseudo-inverse of \(P \), and \(e' = P'C \), with \(PC = 0 \).
 - Canonical cameras, \(P = [I | 0] \), \(P' = [t | m] \), \(F = [e']^T M = P^+ [e] \), where \(e' = m \) and \(e = M^{-1} m \).
 - Cameras not at infinity \(P = K[I | 0] \), \(P' = K'[I | t] \), \(F = K^{-T} t \), \(EK^{-1} = [K't] \), \(KEK^{-1} = K^{-T} R K' \).

Fundamental Matrix & Motion

- Under a pure translational camera motion, 3D points appear to slide along parallel rails. The images of these parallel lines intersect in a vanishing point corresponding to the translation direction. The epipole \(e \) is the vanishing point.
Rectification

- Project each image onto same plane, which is parallel to the epipole
- Resample lines (and shear/stretch) to place lines in correspondence, and minimize distortion

- [Zhang and Loop, MSR-TR-99-21]

Slide from Szeliski, *Computer Vision: Algorithms and Applications*
Rectification

BAD!

Slide from Szeliski; *Computer Vision: Algorithms and Applications*

Rectification

GOOD!

Slide from Szeliski; *Computer Vision: Algorithms and Applications*
Matching criteria

- Raw pixel values (correlation)
- Band-pass filtered images [Jones & Malik 92]
- “Corner” like features [Zhang, …]
- Edges [many people…]
- Gradients [Seitz 89; Scharstein 94]
- Rank statistics [Zabih & Woodfill 94]

Finding correspondences

- Apply feature matching criterion (e.g., correlation or Lucas-Kanade) at all pixels simultaneously
- Search only over epipolar lines (many fewer candidate positions)
Image registration (revisited)

- How do we determine correspondences?
 - block matching or SSD (sum squared differences)

 \[E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x' + d, y') - I_R(x', y')]^2 \]

- How big should the neighborhood be?

Neighborhood size

- Smaller neighborhood: more details
- Larger neighborhood: fewer isolated mistakes
Stereo: certainty modeling

- Compute certainty map from correlations

![Input, Depth Map, Certainty Map](image)

Plane Sweep Stereo

- Sweep family of planes through volume

![Plane Sweep Stereo Diagram](image)

- Each plane defines an image \Rightarrow composite homography
Plane sweep stereo

- Re-order (pixel / disparity) evaluation loops

![Diagram of stereo matching](image)

for every pixel, for every disparity

compute cost

for every disparity for every pixel

compute cost

Stereo matching framework

- For every disparity, compute raw matching costs

Why use a robust function?

- occlusions, other outliers

\[E_D(x, y; d) = \rho(I_L(x' + d, y') - I_R(x', y')) \]

- Can also use alternative match criteria

![Robust function](image)
Stereo matching framework

- Aggregate costs spatially

- Here, $E(x, y; d) = \sum_{(x', y') \in N(x, y)} E_0(x', y', d)$ (efficient moving average implementation)
- Can also use weighted average, [non-linear] diffusion…

Stereo matching framework

- Choose winning disparity at each pixel

$$d(x, y) = \arg\min_d E(x, y; d)$$

- Interpolate to sub-pixel accuracy
Traditional Stereo Matching

- **Advantages:**
 - gives detailed surface estimates
 - fast algorithms based on moving averages
 - sub-pixel disparity estimates and confidence

- **Limitations:**
 - narrow baseline ⇒ noisy estimates
 - fails in textureless areas
 - gets confused near occlusion boundaries

Stereo with Non-Linear Diffusion

- **Problem with traditional approach:**
 - gets confused near discontinuities

- **New approach:**
 - use iterative (non-linear) aggregation to obtain better estimate
 - provably equivalent to mean-field estimate of Markov Random Field
How to get Matching Points? **Features**

- **Colour**
- Corner
- Edges
- Lines

Statistics on Edges: SIFT, SURF, ORB...

In OpenCV: The following detector types are supported:

- "FAST" – FastFeatureDetector
- "STAR" – StarFeatureDetector
- "SIFT" – SIFT (nonfree module)
- "SURF" – SURF (nonfree module)
- "ORB" – ORB
- "BRISK" – BRISK
- "MSER" – MSER
- "GFTT" – GoodFeaturesToTrackDetector
- "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled
- "Dense" – DenseFeatureDetector
- "SimpleBlob" – SimpleBlobDetector

Feature-based stereo

- Match “corner” (interest) points

- Interpolate complete solution
Features -- Colour Features

- RGB is **NOT** an absolute (metric) colour space
- Also!
 - RGB (display or additive colour) does not map to CYMK (printing or subtractive colour) without calibration
 - Y-Cr-Cb or HSV does not solve this either

How to get the Features? **Still** MANY Ways

- Canny edge detector:
Hough Transform

- Uses a voting mechanism
- Can be used for other lines and shapes (not just straight lines)

Hough Transform: Voting Space

\[y = ax + b \]
\[a = -\frac{1}{x}b + \frac{y}{x} \]

- Count the number of lines that can go through a point and move it from the “x-y” plane to the “a-b” plane
- There is only a one-“infinite” number (a line!) of solutions (not a two-“infinite” set – a plane)
Hough Transform: Voting Space

• In practice, the polar form is often used
 \[a = x \cos a + y \sin b \]
• This avoids problems with lines that are nearly vertical

Hough Transform: Algorithm

1. Quantize the parameter space appropriately.

2. Assume that each cell in the parameter space is an accumulator. Initialize all cells to zero.

3. For each point (x,y) in the (visual & range) image space, increment by 1 each of the accumulators that satisfy the equation.

4. Maxima in the accumulator array correspond to the parameters of model instances.
Line Detection – Hough Lines [1]

- A line in an image can be expressed as two variables:
 - Cartesian coordinate system: m, b
 - Polar coordinate system: r, θ
 ➤ avoids problems with vert. lines

 $$y = mx + b \Rightarrow$$

 $$y = \left(-\frac{\cos \theta}{\sin \theta} \right)x + \left(\frac{r}{\sin \theta} \right)$$

- For each point (x_1, y_1) we can write:

 $$r = x_1 \cos \theta + y_1 \sin \theta$$

- Each pair (r, θ) represents a line that passes through (x_1, y_1)

See also OpenCV documentation (cv::HoughLines)

Line Detection – Hough Lines [2]

- Thus a given point gives a sinusoid

- Repeating for all points on the image

See also OpenCV documentation (cv::HoughLines)
Line Detection – Hough Lines [3]

• Thus a given point gives a sinusoid

• Repeating for all points on the image

• NOTE that an intersection of sinusoids represents (a point) represents a line in which pixel points lay.

➢ Thus, a line can be detected by finding the number of Intersections between curves

See also OpenCV documentation (cv::HoughLines)

“Cool Robotics Share” -- Hough Transform

• http://www.activovision.com/octavi/doku.php?id=hough_transform
Line Extraction and Segmentation

Adopted from Williams, Fitch, and Singh, MTRX 4700

Line Formula

\[\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \]

\[y = mx + b \]

Adopted from Williams, Fitch, and Singh, MTRX 4700
Line Estimation

Least squares minimization of the line:

- **Line Equation:** \(y - mx - b = 0 \)
- **Error in Fit:** \(\sum_i (y_i - mx_i - b)^2 \)
- **Solution:**
 \[
 \begin{pmatrix}
 \bar{x} \\
 \bar{y}
 \end{pmatrix} =
 \begin{pmatrix}
 \bar{x}^2 & \bar{x} \\
 \bar{x} & 1
 \end{pmatrix}
 \begin{pmatrix}
 m \\
 b
 \end{pmatrix}
 \]

Adopted from Williams, Fitch, and Singh, MTRX 4700

Line Splitting / Segmentation

- **What about corners?**
 - \(\rightarrow \) Split into multiple lines (via expectation maximization)
 1. Expect (assume) a number of lines \(N \) (say 3)
 2. Find “breakpoints” by finding nearest neighbours upto a threshold or simply at random (RANSAC)
 3. How to know \(N \)? (Also RANSAC)

Adopted from Williams, Fitch, and Singh, MTRX 4700
of a Point from a Line Segment

![Diagram of a point from a line segment](image)

\[
d = \frac{r}{D} = u(y_1 - y_2) + v(x_2 - x_1) + y_2x_1 - y_1x_2
\]

Adopted from Williams, Fitch, and Singh, MTRX 4700

Edge Detection

- **Canny edge detector:**
 - Pepsi Sequence:

![Image Data: http://www.cs.brown.edu/~black/mixtureOF.html and Szelski, CS223B-L9](image)

See also: Use of Temporal information to aid segmentation:
http://www.cs.toronto.edu/~babalex/SpatiotemporalClosure/supplementary_material.html
Why extract features?

- **Object detection**
- Robot Navigation
- Scene Recognition

Steps:
- Extract Features
- Match Features

Adopted from S. Lazebnik, Gang Hua *(CS 558)*

Why extract features? [2]

- Panorama stitching…
 - Step 3: Align images

Adopted from S. Lazebnik, Gang Hua *(CS 558)*
Characteristics of good features

• Repeatability
 – The same feature can be found in several images despite geometric and photometric transformations

• Saliency
 – Each feature is distinctive

• Compactness and efficiency
 – Many fewer features than image pixels

• Locality
 – A feature occupies a relatively small area of the image; robust to clutter and occlusion

Finding Corners

• Key property: in the region around a corner, image gradient has two or more dominant directions

• Corners are repeatable and distinctive

Corner Detection: Basic Idea

- Look through a window
- Shifting a window in any direction should give a large change in intensity

“flat” region: no change in all directions
“edge”: no change along the edge direction
“corner”: significant change in all directions

Source: A. Efros

Corner Detection: Mathematics

Change in appearance of window $w(x,y)$ for the shift $[u,v]$:

$$E(u, v) = \sum_{x,y} w(x, y) [I(x + u, y + v) - I(x, y)]^2$$

Adopted from
S. Lazebnik, Gang Hua (CS 558)
Corner Detection: Mathematics

Change in appearance of window $w(x,y)$ for the shift $[u,v]$:

$$E(u, v) = \sum_{x,y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2$$

Window function $w(x,y) = \begin{cases} 1 \text{ in window, } 0 \text{ outside} & \text{ or } \text{Gaussian} \end{cases}$

Adopted from S. Lazebnik, Gang Hua (CS 558)
Corner Detection: Mathematics

Change in appearance of window \(w(x,y) \)
for the shift \([u,v]\):

\[
E(u, v) = \sum_{x,y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2
\]

We want to find out how this function behaves for small shifts

\[E(u, v) \]

Adopted from
S. Lazebnik,
Gang Hua (CS 558)
Corner Detection: Mathematics

\[E(u, v) = \sum_{x,y} w(x, y) \left[I(x+u, y+v) - I(x, y) \right]^2 \]

Second-order Taylor expansion of \(E(u, v) \) about (0,0):

\[
E(u, v) = E(0,0) + 1_{u,v} E_{,u}(0,0) u + E_{,v}(0,0) v + \frac{1}{2} \begin{bmatrix} E_{,u}(0,0) & E_{,v}(0,0) \\ E_{,v}(0,0) & E_{,v}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \sum_{x,y} 2w(x, y)I_{,x}(x+u, y+v)I_{,x}(x+u, y+v)
\]

\[
E_{,u}(u, v) = \sum_{x,y} 2w(x, y)I_{,x}(x+u, y+v)I_{,x}(x+u, y+v) + \sum_{x,y} 2w(x, y)[I(x+u, y+v) - I(x, y)]I_{,x}(x+u, y+v)
\]

\[
E_{,v}(u, v) = \sum_{x,y} 2w(x, y)I_{,y}(x+u, y+v)I_{,y}(x+u, y+v) + \sum_{x,y} 2w(x, y)[I(x+u, y+v) - I(x, y)]I_{,y}(x+u, y+v)
\]

Adopted from S. Lazebnik, Gang Hua (CS 558)

Corner Detection: Mathematics

\[E(u, v) = \sum_{x,y} w(x, y) \left[I(x+u, y+v) - I(x, y) \right]^2 \]

Second-order Taylor expansion of \(E(u, v) \) about (0,0):

\[
E(u, v) = \begin{bmatrix} \sum_{x,y} w(x, y)I_{,x}(x, y)I_{,x}(x, y) \\ \sum_{x,y} w(x, y)I_{,y}(x, y)I_{,y}(x, y) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} E(0,0) & E_{,u}(0,0) \\ E_{,v}(0,0) & E_{,v}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}
\]

\[
E_{,u}(0,0) = \sum_{x,y} 2w(x, y)I_{,x}(x, y)I_{,x}(x, y)
\]

\[
E_{,v}(0,0) = \sum_{x,y} 2w(x, y)I_{,y}(x, y)I_{,y}(x, y)
\]

Adopted from S. Lazebnik, Gang Hua (CS 558)
Harris detector: Steps

- Compute Gaussian derivatives at each pixel
- Compute second moment matrix M in a Gaussian window around each pixel
- Compute corner response function R
- Threshold R
- Find local maxima of response function (nonmaximum suppression)

Adopted from S. Lazebnik, Gang Hua (CS 558)
Harris Detector: Steps

Compute corner response R

Find points with large corner response: $R > \text{threshold}$

Adopted from S. Lazebnik, Gang Hua (CS 558)
Harris Detector: Steps

Take only the points of local maxima of R

Adopted from S. Lazebnik, Gang Hua (CS 558)
Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Adopted from S. Lazebnik, Gang Hua (CS 558)

RANdom SAmple Consensus

1. Repeatedly select a small (minimal) subset of correspondences
2. Estimate a solution (in this case a the line)
3. Count the number of “inliers”, $|e|<\Theta$
 (for LMS, estimate med($|e|$))
4. Pick the best subset of inliers
5. Find a complete least-squares solution

- Related to least median squares
- See also:
 MAPSAC (Maximum A Posteriori SAmple Consensus)

From Szeliski, Computer Vision: Algorithms and Applications
Cool Robotics Share Time!

D. Wedge, *The RANSAC Song*

Scale Invariant Feature Transform

Basic idea:
- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient - 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

Adapted from slide by David Lowe
SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Properties of SIFT

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
Feature matching

• Given a feature in I_1, how to find the best match in I_2?
 1. Define distance function that compares two descriptors
 2. Test all the features in I_2, find the one with min distance

From Szeliski, *Computer Vision: Algorithms and Applications*

Feature distance

• How to define the difference between two features f_1, f_2?
 – Simple approach is SSD(f_1, f_2)
 • sum of square differences between entries of the two descriptors
 • can give good scores to very ambiguous (bad) matches

From Szeliski, *Computer Vision: Algorithms and Applications*
Feature distance

• How to define the difference between two features f_1, f_2?
 – Better approach: ratio distance = $\frac{\text{SSD}(f_1, f_2)}{\text{SSD}(f_1, f_2')}$
 • f_2 is best SSD match to f_1 in I_2
 • f_2' is 2nd best SSD match to f_1 in I_2
 • gives small values for ambiguous matches

From Szeliski, *Computer Vision: Algorithms and Applications*

Evaluating the results

• How can we measure the performance of a feature matcher?

From Szeliski, *Computer Vision: Algorithms and Applications*
True/false positives

- The distance threshold affects performance
 - True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
 - False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

From Szeliski, *Computer Vision: Algorithms and Applications*

Levenberg-Marquardt

- Iterative non-linear least squares [Press’92]
 - Linearize measurement equations

 $$\hat{u}_i = f(m, x_i) + \frac{\partial f}{\partial m} \Delta m$$
 $$\hat{v}_i = g(m, x_i) + \frac{\partial g}{\partial m} \Delta m$$
 - Substitute into log-likelihood equation: quadratic cost function in Dm

$$\sum_i \sigma_i^{-2} (\hat{u}_i - u_i + \frac{\partial f}{\partial m} \Delta m)^2 + \cdots$$

From Szeliski, *Computer Vision: Algorithms and Applications*
Levenberg-Marquardt

- What if it doesn’t converge?
 - Multiply diagonal by \((1 + l)\), increase \(l\) until it does
 - Halve the step size \(D_m\) (my favorite)
 - Use line search
 - Other ideas?

- Uncertainty analysis: covariance \(S = A^{-1}\)
- Is maximum likelihood the best idea?
- How to start in vicinity of global minimum?

Camera matrix calibration

- Advantages:
 - very simple to formulate and solve
 - can recover \(K [R \mid t]\) from \(M\) using
 QR decomposition [Golub & VanLoan 96]

- Disadvantages:
 - doesn't compute internal parameters
 - more unknowns than true degrees of freedom
 - need a separate camera matrix for each new view
Multi-plane calibration

• Use several images of planar target held at unknown orientations [Zhang 99]
 – Compute plane homographies
 \[
 \begin{bmatrix}
 u_i \\
 v_i \\
 1
 \end{bmatrix}
 \sim K \begin{bmatrix} r_1 & r_2 & t \end{bmatrix}
 \begin{bmatrix}
 x_i \\
 y_i \\
 1
 \end{bmatrix}
 \sim HX
 \]
 – Solve for K-TK-1 from Hk’s
 • 1 plane if only f unknown
 • 2 planes if (f,uc,vc) unknown
 • 3+ planes for full K
 – Code available from Zhang and OpenCV

From Szeliski, *Computer Vision: Algorithms and Applications*

Rotational motion

• Use pure rotation (large scene) to estimate f
 – estimate f from pairwise homographies
 – re-estimate f from 360° “gap”
 – optimize over all \{K,R_j\} parameters
 [Stein 95; Hartley ’97; Shum & Szeliski ’00; Kang & Weiss ’99]
 – Most accurate way to get f, short of surveying distant points

From Szeliski, *Computer Vision: Algorithms and Applications*
Structure [from] Motion

- Given a set of feature tracks, estimate the 3D structure and 3D (camera) motion.
- Assumption: orthographic projection
- Tracks: \((u_f, v_f), f: \text{frame}, p: \text{point}\)
- Subtract out mean 2D position…

\[
i_f: \text{rotation}, \ s_p: \text{position}
\]

\[
u_{fp} = i_f^T s_p, \ v_{fp} = j_f^T s_p
\]

From: Szeliski, *Computer Vision: Algorithms and Applications*
Structure from motion

- How many points do we need to match?
- 2 frames:
 - \((R,t)\): 5 dof + 3n point locations \(\leq 4n\) point measurements \(\Rightarrow\) \(n \geq 5\)
- \(k\) frames:
 - \(6(k-1)+3n \leq 2kn\)

always want to use many more

From Szeliski, *Computer Vision: Algorithms and Applications*

Measurement equations

- Measurement equations

 \[u_{fp} = i_f^T s_p \]
 \[v_{fp} = j_f^T s_p \]

- Stack them up…

 \[W = RS \]

 \[R = (i_1,...,i_F, j_1,...,j_F)^T \]

 \[S = (s_1,...,s_p) \]

From Szeliski, *Computer Vision: Algorithms and Applications*
Factorization

\[W = R_{2F \times 3} S_{3 \times P} \]

SVD

\[W = U A V \quad A \text{ must be rank 3} \]

\[W' = (U A^{1/2})(A^{1/2} V) = U' V' \]

Make R orthogonal

\[R = Q U', \; S = Q^J V' \]

\[i_j^T Q^T Q i_j = 1 \ldots \]

From Szeliski, *Computer Vision: Algorithms and Applications*

Results

- Look at paper figures…

Figure 4.5: A view of the computed shape from approximately above the building (compare with figure 4.6).

Figure 4.7: For a quantitative evaluation, distances between the features shown in the picture were measured on the actual model, and compared with the computed results. The comparison is shown in figure 4.8.

From Szeliski, *Computer Vision: Algorithms and Applications*
Bundle Adjustment

- What makes this non-linear minimization hard?
 - many more parameters: potentially slow
 - poorer conditioning (high correlation)
 - potentially lots of outliers
 - gauge (coordinate) freedom

\[
\begin{align*}
\hat{u}_{ij} &= f(K, R_j, t_j, x_i) \\
\hat{v}_{ij} &= g(K, R_j, t_j, x_i)
\end{align*}
\]

Lots of parameters: sparsity

- Only a few entries in Jacobian are non-zero

\[
\begin{align*}
\frac{\partial \hat{u}_{ij}}{\partial K}, \frac{\partial \hat{u}_{ij}}{\partial R_j}, \frac{\partial \hat{u}_{ij}}{\partial t_j}, \frac{\partial \hat{u}_{ij}}{\partial x_i}
\end{align*}
\]

From Szeliski, *Computer Vision: Algorithms and Applications*
Sparse Cholesky (skyline)

- First used in finite element analysis
- Applied to SfM by [Szeliski & Kang 1994]

Conditioning and gauge freedom

- Poor conditioning:
 - use 2nd order method
 - use Cholesky decomposition

- Gauge freedom
 - fix certain parameters (orientation) or
 - zero out last few rows in Cholesky decomposition
More Cool Robotics Share!

Source: Youtube: Wired, How the Tesla Model S is Made

Cool Robotics Share (IV)

Source: Youtube: Wired, How the Tesla Model S is Made