

Discrete Time Analysis
 \&
 Z-Transforms

ELEC 3004: Systems: Signals \& Controls
Dr. Surya Singh
Lecture 7
elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/
March 21, 2017

Lecture Schedule:

Week	Date	Lecture Title
1	28-Feb	Introduction
	2-Mar	Systems Overview
2	7-Mar	Systems as Maps \& Signals as Vectors
	9-Mar	Systems: Linear Differential Systems
3	14-Mar	Sampling Theory \& Data Acquisition
	16-Mar	Aliasing \& Antialiasing
4	21-Mar	Discrete Time Analysis \& Z-Transform
	23-Mar	Second Order LTID (\& Convolution Review)
5	28-Mar	Frequency Response
	30-Mar	Filter Analysis
5	4-Apr	Digital Filters (IIR)
	6-Apr	Digital Windows
6	11-Apr	Digital Filter (FIR)
	13-Apr	
	18-Apr	Holiday
	20-Apr	
	$25-\mathrm{Apr}$	
7	27-Apr	Active Filters \& Estimation
8	2-May	Introduction to Feedback Control
	4-May	Servoregulation/PID
10	9-May	Introduction to (Digital) Control
	11-May	Digitial Control
11	16-May	Digital Control Design
	18-May	Stability
12	23-May	Digital Control Systems: Shaping the Dynamic Response
	25-May	Applications in Industry
13	30-May	System Identification \& Information Theory
	1-JunS	Summary and Course Review

Follow Along Reading:

B. P. Lathi

Signal processing and linear systems 1998 TK5102.9.L38 1998

- Chapter 8 (Discrete-Time Signals and Systems)
- § 8.1 Introduction
- § 8.2 Some Useful Discrete-Time Signal Models
- § 8.3 Sampling Continuous-Time Sinusoids \& Aliasing
- § 8.4 Useful Signal Operations
- § 8.5 Examples of Discrete-Time Systems
- Chapter 11 (Discrete-Time System Analysis Using the z-Transform)
- § 11.1 The \mathcal{Z}-Transform
- § 11.2 Some Properties of the ZTransform

Next Time \qquad

Cheating: Despiration/lgnorance is not an excuse...

ELEC 3004: Systems
21 March 2017- 5

Platypus: File-Types \& DDos

Please use appropriate filetypes

- PNG [20 kB]

- $(\neq \mathrm{BMP})[700 \mathrm{kB}]$ (

Feedback on the Peer Review/Flagged Answers

Please Note

(1) " 1 "

- Is an indicator in Platypus ${ }_{1}$ that nothing was calculated.
- It does not effect grades at all (it's treated as a NAN)
(2) Flag "serious and egregious" oversights in the marking
- "why so low", "give me mark plz"
is not an egregious oversight
(3) If a peer or tutor gave you a lower than expected mark, then it might mean that you didn't communicate it clearly to them.
- Ask your self how you can do better?
- Remember: "Seeing is forgetting the name ..."
(4) Keep in mind the big picture here
- Focus on the learning, not the marks

<pPCoreaty yppled the law of supe
(阊) ELEC 3004: Systems
21 March 2017-7

Discrete-Time Signal Analysis

Discrete-Time Signal: $f[k]$

- Discrete-time signal:
- May be denoted by $f(k T)$, where time t values are specified at $t=k T$
- OR $f[k]$ and viewed as a function of $k(k \in$ integer $)$
- Continuous-time exponential:
- $f(t)=e^{-t}$, sampled at $T=0.1 \rightarrow f(k T)=e^{-k T}=e^{-0.1 k}$

Why $e^{-k T}$?

- Solution to First-Order ODE!
- Ex: "Tank" Fill
- Where:
- $\mathrm{H}=$ steady-state fluid height in the tank
- $\mathrm{h}=$ height perturbation from the nominal value

- $\mathrm{Q}=$ steady-state flow rate through the tank
- $q_{i}=$ inflow perturbation from the nominal value
- $q_{0}=$ outflow perturbation from the nominal value
- Goal: Maintain H by adjusting Q.

Why $e^{-k T}$? [2]

- $h=R q_{0}$
- $\frac{d C(h+H)}{d t}=\left(q_{i}+Q\right)-\left(q_{0}+Q\right)$
- $\frac{d h}{d t}+\frac{h}{\tau}=\frac{q_{i}}{c}$
- $\tau=R C$

- Solution:

$$
h(t)=e^{\frac{t-t_{0}}{\tau}} h\left(t_{0}\right)+\frac{1}{C} \int_{t_{0}}^{t} e^{\frac{t-\lambda}{\tau}} q_{i}(\lambda) d \lambda
$$

- For a fixed period of time (T) and steps $\mathrm{k}=0,1,2, \ldots$:

$$
h(k+1)=e^{\frac{-T}{\tau}} h(k)+R\left[1-e^{-\frac{T}{\tau}}\right]_{q_{i}(k)}
$$

5
 ELEC 3004: Systems

So Why Is this a Concern? Difference equations

Difference equations arise in problems where the independent variable, usually time, is assumed to have a discrete set of possible values. The nonlinear difference equation

$$
\begin{align*}
y(k+n)= & f[y(k+n-1), y(k+n-2), \ldots, y(k+1), y(k), u(k+n), \tag{2.1}\\
& u(k+n-1), \ldots, u(k+1), u(k)]
\end{align*}
$$

with forcing function $u(k)$ is said to be of order n because the difference between the highest and lowest time arguments of $y($.$) and u($.$) is n$. The equations we deal with in this text are almost exclusively linear and are of the form

$$
\begin{align*}
& y(k+n)+a_{n-1} y(k+n-1)+\cdots+a_{1} y(k+1)+a_{0} y(k) \tag{2.2}\\
& \quad=b_{n} u(k+n)+b_{n-1} u(k+n-1)+\cdots+b_{1} u(k+1)+b_{0} u(k)
\end{align*}
$$

We further assume that the coefficients $a_{i}, b_{i}, i=0,1,2, \ldots$, are constant. The difference equation is then referred to as linear time invariant, or LTI. If the forcing function $u(k)$ is equal to zero, the equation is said to be homogeneous.

Difference equations can be solved using classical methods analogous to those available for differential equations. Alternatively, z-transforms provide a convenient approach for solving LTI equations, as discussed in the next section.

Euler's method*

- Dynamic systems can be approximated ${ }^{\dagger}$ by recognising that:

$$
\dot{x} \cong \frac{x(k+1)-x(k)}{T}
$$

- As $T \rightarrow 0$, approximation error approaches 0

Difference Equation: Euler's approximation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\lim _{\delta t \rightarrow 0} \frac{x(t+\delta t)-x(t)}{\delta t} \quad \Longrightarrow \quad \frac{\mathrm{~d} x}{\mathrm{~d} t} \approx \frac{x_{k+1}-x_{k}}{T}
$$

For small enough T, this can be used to approximate a continuous controller by a discrete controller:

1. Laplace transform \longrightarrow differential equation

$$
\begin{aligned}
& \text { e.g. } \\
& \qquad D(s)=\frac{U(s)}{E(s)}=\frac{K(s+a)}{(s+b)} \quad \Longrightarrow \quad \frac{\mathrm{d} u}{\mathrm{~d} t}+b u=K\left(\frac{d e}{d t}+a e\right)
\end{aligned}
$$

2. Differential equation \longrightarrow difference equation
e.g.

$$
\begin{gathered}
\frac{u_{k+1}-u_{k}}{T}+b u_{k}=K\left(\frac{e_{k+1}-e_{k}}{T}+a e_{k}\right) \\
\Longrightarrow u_{k+1}=(1-b T) u_{k}+K e_{k+1}+K(a T-1) e_{k} \\
=-a_{1} u_{k}+b_{0} e_{k+1}+b_{1} e_{k}
\end{gathered}
$$

Difference Equation: Euler's approximation [2]

Discrete controller recurrence equation:

$$
u_{k}=-a_{1} u_{k-1}-a_{2} u_{k-2}-\ldots+b_{0} e_{k}+b_{1} e_{k-1}+\ldots
$$

coefficients $a_{1}, a_{2}, \ldots, b_{0}, b_{1}, \ldots$ depend on T
Example
Controller: $\quad D(s)=\frac{K(s+a)}{(s+b)}, \quad K=70, a=2 \mathrm{rads}^{-1}, b=10 \mathrm{rad} \mathrm{s}^{-1}$
Plant:

$$
G(s)=\frac{1}{s(s+1)}
$$

- Step response with continuous controller:

Difference Equation: Euler's approximation [3]

- Step responses with discrete controller:

Difference Equation: Euler's approximation [4]

- At high enough sample rates Euler's approximation works well:
- discrete controller \approx continuous controller
- But if sampling is not fast enough the approximation is poor:

$$
\frac{1}{T}>30 \times[\text { System Bandwidth }]
$$

- Works, but Not Efficient ($\boldsymbol{\eta}$)
- Later (May) We consider:
- better ways of representing continuous systems in discrete-time
- ways of analysing discrete controllers directly

Linear Differential System Order

$$
\begin{aligned}
& Q(D) y(t)=P(D) f(t) \\
& Q(D)=D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0} \quad \square \\
& P(D)=b_{m} D^{m}+b_{m-1} D^{m-1}+\cdots+b_{1} D+b_{0} \quad \begin{array}{l}
y(t)=P(D) / Q(D) f(t) \\
\mathrm{P}(\mathrm{D}): \mathrm{M} \\
\mathrm{Q}(\mathrm{D}): \mathrm{N}
\end{array}
\end{aligned}
$$

- In practice: $\mathrm{m} \leq \mathrm{n}$ (yes, N is deNominator)
\because if $m>n$:
then the system is an
$(\mathrm{m}-\mathrm{n})^{\mathrm{th}}$-order differentiator of high-frequency signals!
- Derivatives magnify noise!

Linear Differential Systems

$$
\begin{align*}
& \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{1} \frac{d y}{d t}+a_{0} y(t)= \\
& b_{m} \frac{d^{m} f}{d t^{m}}+b_{m-1} \frac{d^{m-1} f}{d t^{m-1}}+\cdots+b_{1} \frac{d f}{d t}+b_{0} f(t) \tag{2.1a}
\end{align*}
$$

where all the coefficients a_{i} and b_{i} are constants. Using operational notation D to represent $d / d t$, we can express this equation as

$$
\begin{align*}
\left(D^{n}+a_{n-1} D^{n-1}\right. & \left.+\cdots+a_{1} D+a_{0}\right) y(t) \\
& =\left(b_{m} D^{m}+b_{m-1} D^{m-1}+\cdots+b_{1} D+b_{0}\right) f(t) \tag{2.1b}
\end{align*}
$$

or

$$
\begin{equation*}
Q(D) y(t)=P(D) f(t) \tag{2.1c}
\end{equation*}
$$

where the polynomials $Q(D)$ and $P(D)$ are

$$
\begin{align*}
& Q(D)=D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0} \tag{2.2a}\\
& P(D)=b_{m} D^{m}+b_{m-1} D^{m-1}+\cdots+b_{1} D+b_{0} \tag{2.2b}
\end{align*}
$$

Discrete-Time System Analysis

Simple Controller Goes Digital

plant: $\quad y[n]=y[n-1]-T u[n-1]$
sensor: $\quad y[n]=u[n-1]$
controller: $\quad y[n]=K u[n]$
Complex system behaviors, depending on K

Digitisation

- Continuous signals sampled with period T
- k th control value computed at $t_{k}=k T$

Digitisation

- Continuous signals sampled with period T
- $k t$ th control value computed at $t_{k}=k T$

Return to the discrete domain

- Recall that continuous signals can be represented by a series of samples with period T

Zero Order Hold

- An output value of a synthesised signal is held constant until the next value is ready
- This introduces an effective delay of $T / 2$

ELEC 3004: Systems
21 March 2017-25

Effect of ZOH Sampling

$$
\text { Lower sample rate } \quad \Longrightarrow \quad \text { more oscillatory response }
$$

Sampling and reconstruction introduces:
delay in time domain
\& phase lag in freq. domain \leftarrow can destabilize the closed loop system

On average $u(k T)$ is delayed by $T / 2$ relative to $u(t)$ due to the ZOH:

Effect of ZOH Sampling

The ZOH delay of $T / 2$ (sec) causes

$$
\begin{array}{ll}
\text { phase lag }=\omega T / 2(\mathrm{rad}) & \text { at } \omega \mathrm{rad} \mathrm{~s}^{-1} \\
\text { phase lag }=\pi / 2=90^{\circ} & \text { at } \omega=\pi / T[=\text { Nyquist rate }] \\
\text { phase lag }=\pi / 30=6^{\circ} & \text { at } \omega=\pi /(15 T)
\end{array}
$$

* 90° phase lag could be catastrophic
\star If $\omega_{\text {samp }}>30 \times \omega_{\max }$,
then system bandwidth: $\omega_{\max }<\pi /(15 T)$,
so the maximum phase lag is less than 6°
usually safe to ignore
* Any time needed to compute u_{k} causes additional delay (!)

Back to the future

A quick note on causality:

- Calculating the " $(k+1)$ th" value of a signal using

$$
y(k+1)=\underbrace{x(k+1)}_{\text {future value }}+\underbrace{A x(k)-B y(k)}_{\text {current values }}
$$

relies on also knowing the next (future) value of $x(t)$.
(this requires very advanced technology!)

- Real systems always run with a delay:

$$
y(k)=x(k)+A x(k-1)-B y(k-1)
$$

Discrete-Time Impulse Function $\delta[k]$

The discrete-time counterpart of the continuous-time impulse function $\delta(t)$ is $\delta[k]$, defined by

$$
\delta[k]= \begin{cases}1 & k=0 \tag{8.1}\\ 0 & k \neq 0\end{cases}
$$

This function, also called the unit impulse sequence, is shown in Fig. 8.3a. The timeshifted impulse sequence $\delta[k-m]$ is depicted in Fig. 8.3b. Unlike its continuous-time counterpart $\delta(t)$, this is a very simple function without any mystery.

Later, we shall express an arbitrary input $f[k]$ in terms of impulse components. The (zero-state) system response to input $f[k]$ can then be obtained as the sum of system responses to impulse components of $f[k]$.

Discrete-Time Unit Step Function $u[k]$

The discrete-time counterpart of the unit step function $u(t)$ is $u[k]$ (Fig. 8.4), defined by

$$
u[k]= \begin{cases}1 & \text { for } k \geq 0 \tag{8.2}\\ 0 & \text { for } k<0\end{cases}
$$

If we want a signal to start at $k=0$ (so that it has a zero value for all $k<0$), we need only multiply the signal with $u[k]$.

Discrete-Time Exponential γ^{k}

$$
e^{\lambda k}=\gamma^{k}
$$

(a)
(b)

Discrete-Time Exponential γ^{k}

- $e^{\lambda k}=\gamma^{k}$
- $\gamma=e^{\lambda}$ or $\lambda=\ln \gamma$

- In discrete-time systems, unlike the continuous-time case, the form γ^{k} proves more convenient than the form $e^{\lambda k}$

Why?

- Consider $e^{j \Omega k}(\lambda=j \Omega \therefore$ constant amplitude oscillatory)
- $e^{j \Omega k} \Rightarrow \gamma^{k}$, for $\gamma \equiv e^{j \Omega}$
- $\left|e^{j \Omega}\right|=1$, hence $|\gamma|=1$

Discrete-Time Exponential γ^{k}

- Consider $e^{\lambda k}$

When λ : LHP

- Then

- $\gamma=e^{\lambda}$
- $\gamma=e^{\lambda}=e^{a+j b}=e^{a} e^{j b}$
- $|\gamma|=\left|e^{a} e^{j b}\right|=\left|e^{a}\right| \because\left|e^{j b}\right|=1$

Hint: Use γ to Transform $s \leftrightarrow z: z=e^{s T}$

BREAK

z Transforms

(Digital Systems Made eZ)
Review and Extended Explanation

The z-transform

- The discrete equivalent is the z-Transform ${ }^{\dagger}$:

$$
z\{f(k)\}=\sum_{k=0}^{\infty} f(k) z^{-k}=F(z)
$$

and

$$
Z\{f(k-1)\}=z^{-1} F(z)
$$

\dagger This is not an approximation, but approximations are easier to derive

The z-Transform

- It is defined by:

$$
z=r e^{j \omega}
$$

Or in the Laplace domain:

$$
z=e^{s T}
$$

- Thus: $Y(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k} \quad$ or $\quad y[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)$
- I.E., It's a discrete version of the Laplace:

$$
f(k T)=e^{-a k T} \Rightarrow z\{f(k)\}=\frac{z}{z-e^{-a T}}
$$

The z-transform

- In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the z-transform of your functions

$\boldsymbol{F}(\boldsymbol{s})$	$\boldsymbol{F}(\boldsymbol{k} \boldsymbol{t})$	$\boldsymbol{F}(\mathbf{z})$
$\frac{1}{s}$	1	$\frac{z}{z-1}$
$\frac{1}{s^{2}}$	$k T$	$\frac{T z}{(z-1)^{2}}$
$\frac{1}{s+a}$	$e^{-a k T}$	$\frac{z}{z-e^{-a T}}$
$\frac{1}{(s+a)^{2}}$	$k T e^{-a k T}$	$\frac{z T e^{-a T}}{\left(z-e^{-a T}\right)^{2}}$
$\frac{1}{s^{2}+a^{2}}$	$\sin (a k T)$	$\frac{z \sin a T}{z^{2}-(2 \cos a T) z+1}$

Zero-order-hold (ZOH)

- Assume that the signal $x(t)$ is zero for $t<0$, then the output $h(t)$ is related to $x(t)$ as follows:

$$
\begin{aligned}
& h(t)=x(0)[1(t)-1(t-T)]+x(T)[1(t-T)-1(t-2 T)]+\cdots \\
& \quad=\sum_{\mathrm{k}=0}^{\infty} \times(\mathrm{kT})[1(\mathrm{t}-\mathrm{kT})-1(\mathrm{t}-(\mathrm{k}+1) \mathrm{T})]
\end{aligned}
$$

Transfer function of Zero-order-hold (ZOH)

- Recall the Laplace Transforms (L) of:

$$
\begin{aligned}
& \mathcal{L}[\delta(t)]=1 \quad \mathcal{L}[f(t-k T)]=F(s) e^{-k T s} \\
& \mathcal{L}[\delta(t-k T)]=e^{-k T s} \quad \mathcal{L}[1(t-k T)]=\frac{e^{-k T s}}{s}
\end{aligned}
$$

- Thus the \mathcal{L} of $\mathrm{h}(\mathrm{t})$ becomes:
$\mathcal{L}[h(t)]=\mathcal{L}\left[\sum_{k=0}^{\infty} x(k T)[1(\mathrm{t}-\mathrm{kT})-1(\mathrm{t}-(\mathrm{k}+1) \mathrm{T})]\right]$
$=\sum_{k=0}^{\infty} x(k T) L[1(\mathrm{t}-\mathrm{kT})-1(\mathrm{t}-(\mathrm{k}+1) \mathrm{T})]=\sum_{k=0}^{\infty} x(k T)\left[\frac{e^{-k T s}}{s}-\frac{e^{-(k+1) T s}}{s}\right]$
$=\sum_{k=0}^{\infty} x(k T) \frac{e^{-k T s}-e^{-(k+1) T s}}{s}=\sum_{k=0}^{\infty} x(k T) \frac{1-e^{-T s}}{s} e^{-k T s}=\frac{1-e^{-T s}}{s} \sum_{k=0}^{\infty} x(k T) e^{-k T s}$

Transfer function of Zero-order-hold (ZOH)

... Continuing the \mathcal{L} of $h(t) \ldots$

$$
\begin{aligned}
& \mathcal{C}[h(t)]=\mathcal{L}\left[\sum_{\mathrm{k}=0}^{\infty} \mathrm{x}(\mathrm{kT})[1(\mathrm{t}-\mathrm{kT})-1(\mathrm{t}-(\mathrm{k}+1) \mathrm{T})]\right] \\
& =\sum_{k=0}^{\infty} x(k T) L[1(\mathrm{t}-\mathrm{kT})-1(\mathrm{t}-(\mathrm{k}+1) \mathrm{T})]=\sum_{k=0}^{\infty} x(k T)\left[\frac{e^{-k T s}}{s}-\frac{e^{-(k+1) T s}}{s}\right] \\
& =\sum_{k=0}^{\infty} x(k T) \frac{e^{-k T s}-e^{-(k+1) T s}}{s}=\sum_{k=0}^{\infty} x(k T) \frac{1-e^{-T s}}{s} e^{-k T s}=\frac{1-e^{-T s}}{s} \sum_{k=0}^{\infty} x(k T) e^{-k T s} \\
& \quad \rightarrow X(s)=\mathcal{L}\left[\sum_{k=0}^{\infty} x(k T) \delta(t-k T)\right]=\sum_{k=0}^{\infty} x(k T) e^{-k T s} \\
& \therefore H(s)=\mathcal{L}[h(t)]=\frac{1-e^{-T s}}{s} \sum_{k=0}^{\infty} x(k T) e^{-k T s}=\frac{1-e^{-T s}}{s} X(s)
\end{aligned}
$$

Thus, giving the transfer function as:

$$
G_{\mathrm{ZOH}}(s)=\frac{H(s)}{X(s)}=\frac{1-e^{-T s}}{s} \xrightarrow{\boldsymbol{z}} G_{Z O H}(z)=\frac{\left(1-e^{-a T}\right)}{z-e^{-a T}}
$$

Coping with Complexity

Transfer functions help control complexity

- Recall the Laplace transform:

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t=F(s)
$$

where

$$
\mathcal{L}\{\dot{f}(t)\}=s F(s)
$$

- Is there a something similar for sampled systems?

S-Plane to z-Plane [I/2]

S-Plane to z-Plane [2/2]

Pole locations for constant damping ratio $\zeta<1$

$$
\begin{gathered}
s^{2}+\zeta \omega_{0} s+\omega_{0}^{2}=0 \\
\Downarrow \\
s=-\zeta \omega_{0} \pm j \sqrt{1-\zeta^{2}} \omega_{0}
\end{gathered}
$$

$s=-\zeta \omega_{0}+j \sqrt{1-\zeta^{2}} \omega_{0}: \zeta=$ constant

$z=e^{-\zeta \omega_{0} T} e^{-j \sqrt{1-\zeta^{2}} \omega_{0} T}$

Relationship with s-plane poles and z-plane transforms

$$
\text { If } F(s) \text { has a pole at } s=a
$$

$\mathcal{F}(s)$	$f(k T)$	$F(z)$
$\frac{1}{s}$	$1(k T)$	$\frac{z}{z-1}$

\uparrow
consistent with $z=e^{s T}$

$$
\frac{1}{s^{2}}
$$

$k T$
$\frac{T z}{(z-1)^{2}}$

$$
\frac{1}{s+a}
$$

$e^{-a k T}$
$\frac{z}{z-e^{-a T}}$
What about transfer functions?

$$
\frac{1}{(s+a)^{2}}
$$

$k T e^{-a k T}$
$\frac{T z e^{-a T}}{\left(z-e^{-a T}\right)^{2}}$
$G(z)=\left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{G(s)}{s}\right\}$
$\frac{a}{s(s+a)}$
$1-e^{-a k T} \quad \frac{z\left(1-e^{-a T}\right)}{(z-1)\left(z-e^{-a T}\right)}$
\downarrow
$\frac{b-1}{(s+a)(s+b)} e^{-a k T}-e^{-b k T} \frac{\left(e^{-a T}-e^{-b T}\right) z}{\left(z-e^{-a T}\right)\left(z-e^{-b T}\right)}$
If $G(s)$ has poles $s=a_{i}$
then $G(z)$ has poles $z=e^{a_{i} T}$
but the zeros are unrelated
$\frac{a}{s^{2}+a^{2}} \quad \sin a k T$
$\frac{z \sin a T}{z^{2}-(2 \cos a T) z+1}$

$$
\frac{b}{(s+a)^{2}+b^{2}} \quad e^{-a k T} \sin b k T \quad \frac{z e^{-a T} \sin b T}{z^{2}-2 e^{-a T}(\cos b T) z+e^{-2 a T}}
$$

$s \leftrightarrow \mathbf{z}$: Pulse Transfer Function Models

- Pulse in Discrete is equivalent to Dirac- δ

z-Transforms for Difference Equations

- First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

$$
y[n]=a y[n-1]+b u[n]
$$

$$
h[n]= \begin{cases}b a^{n} & n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
H(z)=\sum_{k=0}^{\infty} b a^{k} z^{-k}=b \sum_{k=0}^{\infty}\left(\frac{a}{z}\right)^{k}=\frac{b}{1-a z^{-1}}, \quad \text { when }|z|>|a|
$$

z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

$$
y[n]=a y[n-1]+b u[n]
$$

$$
\begin{gathered}
y[n]-a y[n-1]=b u[n] \\
\downarrow \\
Y(z)-a z^{-1} Y(z)=b U(z)
\end{gathered}
$$

$$
H(z)=\frac{Y(z)}{U(z)}=\frac{b}{1-a z^{-1}}, \text { when does it converge? }
$$

Properties of the the z-transform

- Some useful properties
- Delay by n samples: $Z\{f(k-n)\}=z^{-n} F(z)$
- Linear: $\mathcal{Z}\{a f(k)+b g(k)\}=a F(z)+b G(z)$
- Convolution: $Z\{f(k) * g(k)\}=F(z) G(z)$

So, all those block diagram manipulation tools you know and love will work just the same!

The z-Transform

- It is defined by:

$$
z=r e^{j \omega}
$$

- Or in the Laplace domain:

$$
z=e^{s T}
$$

- That is \rightarrow it is a discrete version of the Laplace:

$$
f(k T)=e^{-a k T} \Rightarrow Z\{f(k)\}=\frac{z}{z-e^{-a T}}
$$

The z-Transform [2]

- Thus:

$$
Y(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k} \quad y[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)
$$

- z -Transform is analogous to other transforms:

$$
\begin{gathered}
Z\{f(k)\}=\sum_{k=0}^{\infty} f(k) z^{-k}=F(z) \\
\text { and } \\
Z\{f(k-1)\}=z^{-1} F(z)
\end{gathered}
$$

\therefore Giving:

The z-Transform [3]

- The z-Transform may also be considered from the Laplace transform of the impulse train representation of sampled signal

$$
\begin{gathered}
u^{*}(t)=u_{0} \delta(t)+u_{1} \delta(t-T)+\ldots+u_{k(t-k T)}+\ldots \\
=\sum_{k=0}^{\infty} u_{k} \delta(t-k T) \\
U^{*}(s)=u_{0}+u_{1} e^{-s T}+\cdots+u_{k} e^{-s k T}+\cdots \\
=\sum_{k=0}^{\infty} u_{k} e^{-k s T} \\
U(z)=\sum_{k=0}^{\infty} u_{k} z^{-k}, \quad z=e^{s T}
\end{gathered}
$$

The z-transform

- In practice, you'll use look-up tables or computer tools (ie. Matlab) to find the z-transform of your functions

$\boldsymbol{F}(\boldsymbol{s})$	$\boldsymbol{F}(\boldsymbol{k t})$	$\boldsymbol{F}(\mathbf{z})$
$\frac{1}{s}$	1	$\frac{z}{z-1}$
$\frac{1}{s^{2}}$	$k T$	$\frac{T z}{(z-1)^{2}}$
$\frac{1}{s+a}$	$e^{-a k T}$	$\frac{z}{z-e^{-a T}}$
$\frac{1}{(s+a)^{2}}$	$k T e^{-a k T}$	$\frac{z T e^{-a T}}{\left(z-e^{-a T}\right)^{2}}$
$\frac{1}{s^{2}+a^{2}}$	$\sin (a k T)$	$\frac{z \sin a T}{z^{2}-(2 \cos a T) z+1}$

z-Transform Example

- Obtain the z-Transform of the sequence:

$$
x[k]=\{3,0,1,4,1,5, \ldots\}
$$

- Solution:

$$
X(z)=3+z^{-2}+4 z^{-3}+z^{-4}+5 z^{-5}
$$

The z-Plane

z-domain poles and zeros can be plotted just like s-domain poles and zeros (of the \mathcal{L}):

- S-plane:

$-\lambda$-Plane
- $\boldsymbol{z}=\boldsymbol{e}^{\boldsymbol{s} \boldsymbol{T}}$ Plane

$-\gamma$-Plane

Deep insight \# I

The mapping between continuous and discrete poles and zeros acts like a distortion of the plane

γ-plane Stability

- For a γ-Plane (e.g. the one the z-domain is embedded in) the unit circle is the system stability bound

γ-plane Stability

- That is, in the z-domain, the unit circle is the system stability bound

z-plane stability

- The z-plane root-locus in closed loop feedback behaves just like the s-plane:

Region of Convergence

- For the convergence of $\mathrm{X}(\mathrm{z})$ we require that

$$
\sum_{n=0}^{\infty}\left|a z^{-1}\right|^{n}<\infty
$$

- Thus, the ROC is the range of values of z for which $\left|\mathrm{az}^{-1}\right|<1$ or, equivalently, $|z|>|a|$. Then

$$
X(z)=\frac{z}{z-a} \quad|z|>|a|
$$

An example!

- Back to our difference equation:

$$
y(k)=x(k)+A x(k-1)-B y(k-1)
$$

becomes

$$
\begin{gathered}
Y(z)=X(z)+A z^{-1} X(z)-B z^{-1} Y(z) \\
(z+B) Y(z)=(z+A) X(z)
\end{gathered}
$$

which yields the transfer function:

$$
\frac{Y(z)}{X(z)}=\frac{z+A}{z+B}
$$

Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}

This looks familiar...

- Compare:

$$
\frac{\mathrm{Y}(\mathrm{~s})}{X(s)}=\frac{s+2}{s+1} \text { vs } \frac{Y(z)}{X(z)}=\frac{z+A}{z+B}
$$

How are the Laplace and z domain representations related?

Linearity:

$$
a_{1} y_{1}[n]+a_{2} y_{2}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} a_{1} Y_{1}(z)+a_{2} Y_{2}(z)
$$

Z-Transform Properties: Time Shifting

$$
y\left[n-n_{0}\right] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_{0}} Y(z)
$$

$$
\begin{aligned}
y_{2}[n] & =y\left[n-n_{0}\right] \\
Y_{2}\left(e^{j w}\right) & =\sum_{k=-\infty}^{\infty} y\left[k-n_{0}\right] z^{-k} \\
& =\sum_{l=-\infty}^{\infty} y[l] z^{-\left(l+n_{0}\right)} \\
& =z^{-n_{0}} Y(z)
\end{aligned}
$$

- Two Special Cases:
- z^{-1} : the unit-delay operator:

$$
x[n-1] \leftrightarrow z^{-1} X(z) \quad R^{\prime}=R \cap\{0<|z|\}
$$

- $\mathrm{z}:$ unit-advance operator:

$$
x[n+1] \leftrightarrow z X(z) \quad R^{\prime}=R \cap\{|z|<\infty\}
$$

More Z-Transform Properties

- Time Reversal

$$
x[n] \leftrightarrow X(z) \quad \mathrm{ROC}=R
$$

$$
x[-n] \leftrightarrow X\left(\frac{1}{z}\right) \quad R^{\prime}=\frac{1}{R}
$$

- Multiplication by n (or Differentiation in z):

$$
x[n] \leftrightarrow X(z) \quad \text { ROC }=R
$$

$$
n x[n] \leftrightarrow-z \frac{d X(z)}{d z} \quad R^{\prime}=R
$$

- Multiplication by z^{n}

$$
x[n] \leftrightarrow X(z) \quad \mathrm{ROC}=R
$$

$$
z_{0}^{n} x[n] \leftrightarrow X\left(\frac{z}{z_{0}}\right) \quad R^{\prime}=\left|z_{0}\right| R
$$

- Convolution

$$
\begin{array}{rlrl}
x_{1}[n] \leftrightarrow X_{1}(z) & \mathrm{ROC} & =R_{1} \\
x_{2}[n] & X_{2}(z) & \mathrm{ROC} & =R_{2} \\
& & \\
x_{1}[n] * x_{2}[n] \leftrightarrow X_{1}(z) X_{2}(z) & & R^{\prime} \supset R_{1} \cap R_{2}
\end{array}
$$

The z-plane [for all pole systems]

- We can understand system response by pole location in the z plane
[Adapted from Franklin, Powell and Emami-Naeini]

Effect of pole positions

- We can understand system response by pole location in the z plane

Effect of pole positions

- We can understand system response by pole location in the z plane

Effect of pole positions

- We can understand system response by pole location in the z plane

z-Plane Response for $2^{\text {no }}$ Order Systems:

 Damping (ζ) and Natural frequency $(\omega)$$z=e^{s T}$ where $s=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}$

Recall dynamic responses

- Ditto the z-plane:

Deep insight \#2

- Gains that stabilise continuous systems can actually destabilise digital systems!

Sampling \& ANTMATMASING (Recap)

SaV (Signals as Vectors):
 Signals as Complex Numbers \rightarrow Phasors

$$
\begin{aligned}
\mathrm{Re}^{j \theta} & =(R \cos \theta, R \sin \theta) \\
& =R \cos \theta+j R \sin \theta \\
& =R(\cos \theta+j \sin \theta)
\end{aligned}
$$

Nyquist sampling theorem

What continuous signal is represented by a given set of samples?
Infinitely many continuous signals have the same discrete samples:

An answer is provided by Nyquist's sampling theorem:
A signal $y(t)$ is uniquely defined by its samples $y(k T)$ if the sampling frequency is more than twice the bandwidth of $y(t)$.

Nyquist sampling theorem [2]

Example - Sampled sinusoidal signal
Sample $\cos (\hat{\omega} t)$ at frequency $\omega_{s}=2 \pi / T$:

$$
y(t)=\cos (\hat{\omega} t) \xrightarrow{\text { sample }} y(k T)=\cos (k \hat{\omega} T)=\cos \left(2 \pi k \hat{\omega} / \omega_{s}\right)
$$

Identical samples are obtained from a sinusoid with frequency $\omega_{s}-\hat{\omega}$:

$$
\begin{aligned}
\cos \left(\left(\omega_{s}-\hat{\omega}\right) t\right) \xrightarrow{\text { sample }} \cos \left(k\left(\omega_{s}-\hat{\omega}\right) T\right) & =\cos \left(2 \pi k-2 \pi k \hat{\omega} / \omega_{s}\right) \\
& =\cos \left(2 \pi k \hat{\omega} / \omega_{s}\right)
\end{aligned}
$$

The spectrum of $y(k T)$ contains an alias at frequency $\omega_{s}-\hat{\omega}!!$

(a copy of the original signal $y(t)$ shifted to a different frequency)

Nyquist sampling theorem \& alliasing

Example - Sampled sinusoidal signal
By the same argument, $y(k T)$ contains an infinite number of aliases at $\omega_{s} \pm \hat{\omega}, 2 \omega_{s} \pm \hat{\omega}, 3 \omega_{s} \pm \hat{\omega}, \ldots$

The Nyquist sampling theorem requires $\omega_{s}>2 \hat{\omega}$
$y(t)$ and alias spectra do not overlap
$y(t)$ can be recovered without distortion from $y(k T)$ (via low-pass filter)

Aliasing: Nonuniqueness of Discrete-Time Sinusoids [p. 553]

Fig. 8.11 A graphical artifice to determine the reduced frequency of a discrete-time
sinusoid.

Complex Numbers and Phasors

$$
\begin{aligned}
\mathrm{Re}^{-j \theta} & =(R \cos (-\theta), R \sin (-\theta)) \\
& =R \cos (-\theta)+j R \sin (-\theta) \\
& =R(\cos \theta-j \sin \theta)
\end{aligned}
$$

Positive and Negative Frequencies

- Frequency is the derivative of phase more nuanced than :

$$
\frac{1}{\tau}=\text { repetition rate }
$$

- Hence both positive and negative frequencies are possible.
- Compare
- velocity vs speed
- frequency vs repetition rate

Negative Frequency

- Q: What is negative frequency?
- A: A mathematical convenience
- Trigonometrical FS
- periodic signal is made up from
- sum 0 to ∞ of sine and cosines 'harmonics'
?
- Complex Fourier Series \& the Fourier Transform
- use $\exp (j \omega t)$ instead of $\cos (\omega t)$ and $\sin (\omega t)$
- signal is sum from 0 to ∞ of $\exp (\pm j \omega t)$
- same as sum $-\infty$ to ∞ of $\exp (-j \omega t)$
- which is more compact (i.e., less $L^{a} T_{e} X!$)

Eni ELEC 3004: Systems

Next Time...

- Digital Systems
- Review:
- Chapter 8 of Lathi
- A signal has many signals © [Unless it's bandlimited. Then there is the one ω]

Modulation

Analog Methods:

- AM - Amplitude modulation
- Amplitude of a (carrier) is modulated to the (data)

- FM - Frequency modulation
- Frequency of a (carrier) signal is varied in accordance to the amplitude of the (data) signal

- PM - Phase Modulation

Modulation [Digital Methods]

Start with a "symbol" \& place it on a channel

- ASK (amplitude-shift keying)

- FSK (frequency-shift keying)

- PSK (phase-shift keying)
- QAM (quadrature amplitude modulation)
$s(t)=A \cdot \cos \left(\omega_{c}+\phi_{i}(t)\right)$
$=x_{i}(t) \cos \left(\omega_{c} t\right)+x_{q}(t) \sin \left(\omega_{c} t\right)$

Source: http://en.wikipedia.org/wiki/Modulation | http://users.ecs.soton.ac.uk/sqc/EL334 | http://en.wikipedia.org/wiki/Constellation diagram

Modulation [Example - V.32bis Modem]

Figure 10.13 Illustration of the QAM constellation for a V. 32 bis dialup modem.

Multiple Access (Channel Access Method)

- Send multiple signals on 1 to N channel(s)
- Frequency-division multiple access (FDMA)
- Time-division multiple access (TDMA)
- Code division multiple access (CDMA)
- Space division multiple access (SDMA)
- CDMA:
- Start with a pseudorandom code (the noise doesn't know your code)

