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Lecture Schedule: 
Week Date Lecture Title 

1 
28-Feb Introduction 

2-Mar Systems Overview 

2 
7-Mar Systems as Maps & Signals as Vectors 

9-Mar Systems: Linear Differential Systems 

3 
14-Mar Sampling Theory & Data Acquisition 

16-Mar Aliasing & Antialiasing 

4 21-Mar Discrete Time Analysis & Z-Transform 
23-Mar Second Order LTID (& Convolution Review) 

5 
28-Mar Frequency Response 

30-Mar Filter Analysis 

5 
4-Apr Digital Filters (IIR) 

6-Apr Digital Windows 

6 
11-Apr Digital Filter (FIR) 

13-Apr FFT 

  

18-Apr 

Holiday 20-Apr 

25-Apr 

7 27-Apr Active Filters & Estimation 

8 
2-May Introduction to Feedback Control 

4-May Servoregulation/PID 

10 
9-May Introduction to (Digital) Control 

11-May Digitial Control 

11 
16-May Digital Control Design 

18-May Stability 

12 
23-May Digital Control Systems: Shaping the Dynamic Response 

25-May Applications in Industry 

13 
30-May System Identification & Information Theory 

1-Jun Summary and Course Review 
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 8 (Discrete-Time Signals 

and Systems) 
– § 8.1 Introduction 

– § 8.2 Some Useful Discrete-Time Signal Models 

– § 8.3 Sampling Continuous-Time  

Sinusoids & Aliasing 

– § 8.4 Useful Signal Operations 

– § 8.5 Examples of Discrete-Time Systems 

 

 

 

• Chapter 11 (Discrete-Time System 

Analysis Using the z-Transform) 

– § 11.1 The 𝒵-Transform  

– § 11.2 Some Properties of the Z-

Transform 

 

 

 

 

Today 
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Convolution 
ℱ: Fourier Series  

(Periodic 
functions) 

ℒ  ℱ:  
(𝜉 = 𝜎 + 𝑖𝜏) 

(ℝ  ℂ) 
ℂ: Poles & Zeros DFFT Z-Transform 

Lecture Overview 

ODE 

ℒ: Laplace (s) 

Transfer 
functions 

Cascade of 
LCC  ODE 

Convolution 

Z-Transform 

• Course So Far: 

 

 

 

 

• Lecture(s): 
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Cheating: Despiration/Ignorance is not an excuse… 
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Platypus: File-Types & DDoS  
Please use appropriate filetypes 

• PNG  [20 kB] 

 

 

 

 

 

 

• (≠ BMP)  [700 kB] 

✔ 

L 
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Feedback on the Peer Review/Flagged Answers 
Please Note  

(1) “-1”  

• Is an indicator in Platypus1 that nothing was calculated. 

• It does not effect grades at all (it’s treated as a NAN) 

(2) Flag “serious and egregious” oversights in the marking 

• “why so low”, “give me mark plz” 

 is not an egregious oversight 

(3) If a peer or tutor gave you a lower than expected mark, then it 

might mean that you didn’t communicate it clearly to them.   

• Ask your self how you can do better? 

• Remember: “Seeing is forgetting the name …” 

(4) Keep in mind the big picture here 

• Focus on the learning, not the marks 
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• Discrete-time signal:  
– May be denoted by f(kT), where time t values are specified at t = kT 

– OR  f[k] and viewed as a function of k (k ∈ integer) 

• Continuous-time exponential: 

• 𝑓(𝑡)  =  𝑒−𝑡 , sampled at T = 0.1  𝑓(𝑘𝑇)  =  𝑒−𝑘𝑇  =  𝑒−0.1𝑘 

Discrete-Time Signal: f[k] 
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• Solution to First-Order ODE! 

• Ex:  “Tank” Fill 

• Where: 
• H=steady-state fluid height in the tank 

• h=height perturbation from the nominal value 

• Q=steady-state flow rate through the tank 

• qi=inflow perturbation from the nominal value  

• q0=outflow perturbation from the nominal value 

 

• Goal: Maintain H by adjusting Q.  

 

Why 𝑒−𝑘𝑇 ?  

21 March 2017 - ELEC 3004: Systems 10 
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• ℎ = 𝑅𝑞0 

•
𝑑𝐶 ℎ+𝐻

𝑑𝑡
 =  (𝑞𝑖+𝑄) − 𝑞0 + 𝑄  

•
𝑑ℎ

𝑑𝑡
+

ℎ

𝜏
=

𝑞𝑖

𝐶
  

• 𝜏 = 𝑅𝐶 

• Solution: 

ℎ 𝑡 = 𝑒
𝑡−𝑡0
𝜏 ℎ 𝑡0 +

1

𝐶
 𝑒

𝑡− 𝜆
𝜏 𝑞𝑖 𝜆 𝑑𝜆

𝑡

𝑡0

 

 

• For a fixed period of time (T) and steps k=0,1,2,…: 

ℎ 𝑘 + 1 = 𝑒
−𝑇
𝜏 ℎ 𝑘 + 𝑅 1 − 𝑒−

𝑇
𝜏 𝑞𝑖 𝑘  

Why 𝑒−𝑘𝑇 ?  [2] 
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So Why Is this a Concern? Difference equations  
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Euler’s method* 
• Dynamic systems can be approximated† by recognising that: 

 

 

𝑥 ≅
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇
 

T 

x(tk) 

x(tk+1) 

*Also known as the forward rectangle rule 

†Just an approximation – more on this later 

• As 𝑇 → 0, approximation 

error approaches 0  

21 March 2017 - ELEC 3004: Systems 13 

Difference Equation: Euler’s approximation 
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Difference Equation: Euler’s approximation [2] 
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Difference Equation: Euler’s approximation [3] 
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• At high enough sample rates Euler’s approximation works well: 
• discrete controller ≈ continuous controller 

 

• But if sampling is not fast enough the approximation is poor: 
1

𝑇
 >  30 × [𝑆𝑦𝑠𝑡𝑒𝑚 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ] 

 

• Works, but Not Efficient (η)  

 

 

• Later (May) We consider: 
– better ways of representing continuous systems in discrete-time 

– ways of analysing discrete controllers directly 

Difference Equation: Euler’s approximation [4] 
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• In practice: m ≤ n 

∵ if m > n: 

then the system is an  

(m - n)th -order differentiator of high-frequency signals! 

 

• Derivatives magnify noise! 

Linear Differential System Order 

y(t)=P(D)/Q(D) f(t) 

P(D): M  

Q(D): N   

(yes, N is deNominator) 

 

21 March 2017 - ELEC 3004: Systems 18 
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Linear Differential Systems 
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Simple Controller Goes Digital 

21 March 2017 - ELEC 3004: Systems 21 

Digitisation 

• Continuous signals sampled with period T 

• kth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

controller 

sampler 

DAC 

21 March 2017 - ELEC 3004: Systems 22 
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Digitisation 
• Continuous signals sampled with period T 

• kth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

sampler 

y(kT) 

controller 

DAC 
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Return to the discrete domain 

• Recall that continuous signals can be represented by a 

series of samples with period T 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x(kT) T 

21 March 2017 - ELEC 3004: Systems 24 
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Zero Order Hold 
• An output value of a synthesised signal is held constant until 

the next value is ready 
– This introduces an effective delay of  T/2 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x 

21 March 2017 - ELEC 3004: Systems 25 

Effect of ZOH Sampling 
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Effect of ZOH Sampling 
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Back to the future 
A quick note on causality: 

• Calculating the “(k+1)th” value of a signal using 
 

𝑦 𝑘 + 1 = 𝑥 𝑘 + 1 + 𝐴𝑥 𝑘 − 𝐵𝑦 𝑘  

 

relies on also knowing the next (future) value of x(t). 
(this requires very advanced technology!) 

 

• Real systems always run with a delay: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

current values future value 

21 March 2017 - ELEC 3004: Systems 28 
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Discrete-Time Impulse Function 𝛿[𝑘] 

21 March 2017 - ELEC 3004: Systems 29 

Discrete-Time Unit Step Function 𝑢[𝑘] 

21 March 2017 - ELEC 3004: Systems 30 
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𝑒𝜆𝑘 = 𝛾𝑘 

 

Discrete-Time Exponential  𝛾𝑘 

21 March 2017 - ELEC 3004: Systems 31 

 

• 𝑒𝜆𝑘 = 𝛾𝑘 

• 𝛾 = 𝑒𝜆 or 𝜆 = ln 𝛾 

 

• In discrete-time systems, unlike the continuous-time case,  

the form 𝛾𝑘 proves more convenient than the form 𝑒𝜆𝑘 

 

Why? 

• Consider 𝑒𝑗Ω𝑘 (𝜆 = 𝑗Ω ∴ constant amplitude oscillatory)  

• 𝑒𝑗Ω𝑘  𝛾𝑘, for 𝛾 ≡ 𝑒𝑗Ω 

• 𝑒𝑗Ω = 1, hence 𝛾 = 1 

Discrete-Time Exponential  𝛾𝑘 

21 March 2017 - ELEC 3004: Systems 32 
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• Consider 𝑒𝜆𝑘 

When 𝜆: LHP 

• Then  

• 𝛾 = 𝑒𝜆 

• 𝛾 = 𝑒𝜆 = 𝑒𝑎+𝑗𝑏 = 𝑒𝑎𝑒𝑗𝑏 

• 𝛾 = 𝑒𝑎𝑒𝑗𝑏 = 𝑒𝑎  ∵ 𝑒𝑗𝑏 = 1 

 

Discrete-Time Exponential  𝛾𝑘 

21 March 2017 - ELEC 3004: Systems 33 

Hint: Use 𝜸 to Transform s ↔ z: z=esT 
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BREAK 
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z Transforms 
(Digital Systems Made eZ) 

 
Review and Extended Explanation 
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The z-transform 

• The discrete equivalent is the z-Transform†: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 

 
 
 

Convenient! 
 

†This is not an approximation, but approximations are easier to derive 

F(z) y(k) x(k) 
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The z-Transform 

 

• It is defined by: 
 

 
Or in the Laplace domain: 

𝑧 = 𝑒𝑠𝑇 

 

• Thus:    or  

 

 

• I.E., It’s a discrete version of the Laplace: 

𝑓 𝑘𝑇 = 𝑒−𝑎𝑘𝑇 ⇒ 𝒵 𝑓 𝑘 =
𝑧

𝑧 − 𝑒−𝑎𝑇
 

 
21 March 2017 - ELEC 3004: Systems 38 
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The z-transform 
• In practice, you’ll use look-up tables or computer tools (ie. Matlab) 

to find the z-transform of your functions 

 
𝑭(𝒔) F(kt) 𝑭(𝒛) 

1

𝑠
 

1 𝑧

𝑧 − 1
 

1

𝑠2
 

𝑘𝑇 𝑇𝑧

𝑧 − 1 2
 

1

𝑠 + 𝑎
 

𝑒−𝑎𝑘𝑇 𝑧

𝑧 − 𝑒−𝑎𝑇
 

1

𝑠 + 𝑎 2
 

𝑘𝑇𝑒−𝑎𝑘𝑇 𝑧𝑇𝑒−𝑎𝑇

𝑧 − 𝑒−𝑎𝑇 2
 

1

𝑠2 + 𝑎2
 

sin (𝑎𝑘𝑇) 𝑧 sin𝑎𝑇

𝑧2− 2cos𝑎𝑇 𝑧 + 1 
 

21 March 2017 - ELEC 3004: Systems 39 

• Assume that the signal x(t) is zero for t<0, then the output 

h(t) is related to x(t) as follows: 

 

Zero-order-hold (ZOH) 

x(t) x(kT) h(t) Zero-order 

Hold 
Sampler 

21 March 2017 - ELEC 3004: Systems 40 
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• Recall the Laplace Transforms (ℒ)  of: 

 

 

 

 

• Thus the ℒ of h(t) becomes: 

 

 

 

 

 

 

 

 

 

Transfer function of Zero-order-hold (ZOH) 
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… Continuing the ℒ of h(t) … 

 

 

 

 

 

 

 

 

 

 Thus, giving the transfer function as:  

 

 

 

 

 

 

 

 

 

Transfer function of Zero-order-hold (ZOH) 

𝓩 
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Transfer functions help control complexity 
– Recall the Laplace transform: 

ℒ 𝑓 𝑡 =  𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

0

= 𝐹 𝑠  

where 

ℒ 𝑓 𝑡 = 𝑠𝐹(𝑠) 

 

 

 

 

• Is there a something similar for sampled systems? 

Coping with Complexity 

H(s) y(t) x(t) 
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S-Plane to z-Plane [1/2] 
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S-Plane to z-Plane [2/2] 
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Relationship with s-plane poles and z-plane 
transforms 
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• Pulse in Discrete is equivalent to Dirac-δ 

 

 

 

 

  

𝐺 𝑧 = 1 − 𝑧−1 𝒵 ℒ−1
𝐺 𝑠

𝑠
𝑡=𝑘𝑇

= 𝟏 − 𝒛−𝟏 𝓩
𝑮 𝒔

𝒔
 

 

 

s ↔ z: Pulse Transfer Function Models 

Source: Oxford 2A2 Discrete Systems, Tutorial Notes p. 26 
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• First-order linear constant coefficient difference equation: 

 

 

z-Transforms for Difference Equations 
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z-Transforms for Difference Equations 
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Properties of the the z-transform 
• Some useful properties 

– Delay by 𝒏 samples: 𝒵 𝑓 𝑘 − 𝑛 = 𝑧−𝑛𝐹 𝑧  

– Linear: 𝒵 𝑎𝑓 𝑘 + 𝑏𝑔(𝑘) = a𝐹 𝑧 + 𝑏𝐺(𝑧) 
– Convolution: 𝒵 𝑓 𝑘 ∗ 𝑔(𝑘) =  𝐹 𝑧 𝐺(𝑧) 

 
So, all those block diagram manipulation tools you know and love 

will work just the same! 
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• It is defined by: 

 

 

• Or in the Laplace domain: 

𝑧 = 𝑒𝑠𝑇 

 

• That is  it is a discrete version of the Laplace: 

𝑓 𝑘𝑇 = 𝑒−𝑎𝑘𝑇 ⇒ 𝒵 𝑓 𝑘 =
𝑧

𝑧 − 𝑒−𝑎𝑇
 

 

The z-Transform 

21 March 2017 - ELEC 3004: Systems 51 

• Thus: 

 

 

• z-Transform is analogous to other transforms: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 ∴  Giving: 

 

 

The z-Transform [2] 

F(z) y(k) x(k) 

21 March 2017 - ELEC 3004: Systems 52 



27 

• The z-Transform may also be considered from the  

Laplace transform of the impulse train representation of 

sampled signal 

 

𝑢∗ 𝑡 = 𝑢0𝛿 𝑡 + 𝑢1𝛿 𝑡 − 𝑇 + …+ 𝑢𝑘 𝑡−𝑘𝑇 + …  

=  𝑢𝑘𝛿(𝑡 − 𝑘𝑇)

∞

𝑘=0

 

 

 

The z-Transform [3] 
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The z-transform 
• In practice, you’ll use look-up tables or computer tools (ie. Matlab) 

to find the z-transform of your functions 

 
𝑭(𝒔) F(kt) 𝑭(𝒛) 

1

𝑠
 

1 𝑧

𝑧 − 1
 

1

𝑠2
 

𝑘𝑇 𝑇𝑧

𝑧 − 1 2
 

1

𝑠 + 𝑎
 

𝑒−𝑎𝑘𝑇 𝑧

𝑧 − 𝑒−𝑎𝑇
 

1

𝑠 + 𝑎 2
 

𝑘𝑇𝑒−𝑎𝑘𝑇 𝑧𝑇𝑒−𝑎𝑇

𝑧 − 𝑒−𝑎𝑇 2
 

1

𝑠2 + 𝑎2
 

sin (𝑎𝑘𝑇) 𝑧 sin𝑎𝑇

𝑧2− 2cos𝑎𝑇 𝑧 + 1 
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• Obtain the z-Transform of the sequence: 

𝑥 𝑘 = {3, 0, 1, 4,1,5, … } 

 

 

• Solution: 

𝑋 𝑧 = 3 + 𝑧−2 + 4𝑧−3 + 𝑧−4 + 5𝑧−5 

 

z-Transform Example 
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The z-Plane 
z-domain poles and zeros can be plotted just  

like s-domain poles and zeros (of the ℒ): 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

• S-plane:  

 

 

 

 

 

 

 

 
–  λ – Plane  

• 𝒛 = 𝒆𝒔𝑻  Plane 

 

 

 

 

 

 

 

 
– γ – Plane  
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Deep insight #1 

The mapping between continuous and discrete poles and 

zeros acts like a distortion of the plane 

Img(z) 

Re(z) 

Img(s) 

Re(s) 

1 

max frequency 
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γ-plane Stability 
• For a γ-Plane (e.g. the one the z-domain is embedded in) 

the unit circle is the system stability bound 

 

 
Img(z) 

Re(z) 
1 

unit circle 

Img(s) 

Re(s) 
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γ-plane Stability 
• That is, in the z-domain,  

the unit circle is the system stability bound 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

   
     

  
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z-plane stability 
• The z-plane root-locus in closed loop feedback behaves just 

like the s-plane: 

 

 Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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• For the convergence of X(z) we require that 

 

 

• Thus, the ROC is the range of values of z for which |az-1|< l 

or, equivalently, |z| > |a|. Then  

Region of Convergence 
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An example! 
• Back to our difference equation: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

becomes 

𝑌 𝑧 = 𝑋 𝑧 + 𝐴𝑧−1𝑋 𝑧 − 𝐵𝑧−1𝑌(𝑧)  
(𝑧 + 𝐵)𝑌(𝑧)  = (𝑧 + 𝐴)𝑋 𝑧  

 

which yields the transfer function: 
 

𝑌(𝑧)

𝑋(𝑧)
=
𝑧 + 𝐴

𝑧 + 𝐵
 

 
Note: It is also not uncommon to see systems expressed as polynomials in 𝑧−𝑛 
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This looks familiar… 
 

• Compare: 
Y s

𝑋 𝑠
=

𝑠+2

𝑠+1
  vs  

𝑌(𝑧)

𝑋(𝑧)
=

𝑧+𝐴

𝑧+𝐵
 

 

How are the Laplace and z domain representations related? 
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• Two Special Cases: 

• z-1: the unit-delay operator: 

 

 

• z: unit-advance operator:  

 

Z-Transform Properties: Time Shifting 

21 March 2017 - ELEC 3004: Systems 64 



33 

More Z-Transform Properties 

• Time Reversal 

 

 

 

 

• Multiplication by zn 

• Multiplication by n (or 

Differentiation in z):  

 

 

 

 

• Convolution 
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The z-plane [ for all pole systems ] 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Most like the s-plane 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

Increasing frequency 
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Effect of pole positions 
• We can understand system response by pole location in the z-

plane 

Img(z) 

Re(z) 
1 

!! 
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z-Plane Response for 2nd Order Systems: 
Damping (ζ) and Natural frequency (ω) 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Recall dynamic responses 
• Ditto the z-plane: 

Img(z) 

Re(z) 

   

“More unstable” 

Faster 

More 

Oscillatory 

Pure integrator 

More damped 

? 
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Deep insight #2 
• Gains that stabilise continuous systems can actually  

destabilise digital systems! 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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Sampling & Antialiasing  
(Recap) 
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SaV (Signals as Vectors): 
Signals as Complex Numbers  Phasors 
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Nyquist sampling theorem 
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Nyquist sampling theorem [2] 
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Nyquist sampling theorem & alliasing 
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Aliasing: Nonuniqueness of Discrete-Time Sinusoids [p. 553] 
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Complex Numbers and Phasors 
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Positive and Negative Frequencies 
• Frequency is the derivative of phase  

more nuanced than : 
1

𝜏
= 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

 

• Hence both positive and negative frequencies are possible. 

 

 

• Compare 
– velocity vs speed 

– frequency vs repetition rate 
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• Q: What is negative frequency? 

• A: A mathematical convenience 

 

• Trigonometrical FS 
– periodic signal is made up from 

– sum 0 to  of sine and cosines ‘harmonics’ 

 

• Complex Fourier Series & the Fourier Transform 
– use exp ( 𝑗𝜔𝑡) instead of cos (𝜔𝑡)  and sin (𝜔𝑡)  
– signal is sum from 0 to  of exp (𝑗𝜔𝑡) 
– same as sum - to  of exp (−𝑗𝜔𝑡)  
– which is more compact (i.e., less LaTeX!) 

Negative Frequency 
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• Digital Systems 

 

 

 

• Review:  
– Chapter 8 of Lathi  

 

 

• A signal has many signals  

[Unless it’s bandlimited.  Then there is the one ω] 

 

 

Next Time… 
 
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Modulation 

Analog Methods: 

• AM - Amplitude modulation 

– Amplitude of a (carrier) is 

modulated to the (data) 

 

• FM - Frequency modulation 

– Frequency of a (carrier) signal 

is varied in accordance to the 

amplitude of the (data) signal 

 

• PM – Phase Modulation 

Source: http://en.wikipedia.org/wiki/Modulation 
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Start with a “symbol” & place it on a channel  

• ASK (amplitude-shift keying) 

 

 

• FSK (frequency-shift keying) 

 

 

 

• PSK (phase-shift keying) 

• QAM (quadrature amplitude modulation) 

𝑠 𝑡 = 𝐴 ⋅ 𝑐𝑜𝑠 𝜔𝑐 + 𝜙𝑖 𝑡  
= 𝑥𝑖 𝑡 cos 𝜔𝑐𝑡 + 𝑥𝑞 𝑡 sin 𝜔𝑐𝑡  

Modulation [Digital Methods] 

Source: http://en.wikipedia.org/wiki/Modulation |  http://users.ecs.soton.ac.uk/sqc/EL334 | http://en.wikipedia.org/wiki/Constellation_diagram 
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Modulation [Example – V.32bis Modem] 

Source: Computer Networks and Internets, 5e,  Douglas E. Comer 
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• Send multiple signals on 1 to N channel(s) 
– Frequency-division multiple access (FDMA) 

– Time-division multiple access (TDMA) 

– Code division multiple access (CDMA) 

– Space division multiple access (SDMA) 

•  CDMA: 
– Start with a pseudorandom code (the noise doesn’t know your code)  

 

 

 

Multiple Access (Channel Access Method) 

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access 

21 March 2017 - ELEC 3004: Systems 86 

https://en.wikipedia.org/wiki/Code_division_multiple_access

