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Follow Along Reading:

— Today
B. P. Lathi » Chapter 8 (Discrete-Time Signals
Signal processing
and linear systems and SyStemS)
1998 — §8.1Introduction
TK5102.9.0.38 1998 — §8.2 Some Useful Discrete-Time Signal Models

— 88.3 Sampling Continuous-Time
Sinusoids & Aliasing

—  88.4 Useful Signal Operations
— 88.5 Examples of Discrete-Time Systems

.+ Chapter 11 (Discrete-Time System :
:  Analysis Using the z-Transform)
— §11.1 The Z-Transform

— §11.2 Some Properties of the Z-
Transform

. Next Timg =ssssssssssssssssssssssssssnsnnsssssasnnsnannnnnnnns ,

Lecture Overview

* Course So Far: Transfer

ODE functions Convolution

Q O O

L: Laplace (s)

Z-Transfo

+ Lecture(s):

F: Fourier Series L>F:
Convolution (Periodic (E=0+i1) C: Poles & Zeros DFFT Z-Transform
functions) (R>C)
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Feedback on the Peer Review/Flagged Answers

Please Note
) «“1~
+ Isan indicator in Platypus, that nothing was calculated.
» It does not effect grades at all (it’s treated as a NAN)
(2) Flag “serious and egregious” oversights in the marking
*  “why so low”, “give me mark plz”
is not an egregious oversight
(3) If a peer or tutor gave you a lower than expected mark, then it
might mean that you didn’t communicate it clearly to them.
» Ask your self how you can do better?
* Remember: “Seeing is forgetting the name ...”
(4) Keep in mind the big picture here
» Focus on the learning, not the marks

)

Discrete-Time
Signal Analysls
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Discrete-Time Signal: f[k]

SLk1l} or f{kT)

”U HH!HTI%H::&

1 i

-2T T 5T 107 [

* Discrete-time signal:
— May be denoted by f(kT), where time t values are specified at t = KT
— OR f[k] and viewed as a function of k (k € integer)

+ Continuous-time exponential:
s f(t) = et sampledat T=0.1=> f(kT) = e ¥ = =01k

Why e T ?
« Solution to First-Order ODE!
* Ex: “Tank” Fill
« Where: IhT !
» H=steady-state fluid height in the tank H
* h=height perturbation from the nominal vaIueL g

» Q=steady-state flow rate through the tank
+ g;=inflow perturbation from the nominal value
* (y=outflow perturbation from the nominal value

Goal: Maintain H by adjusting Q.




Why e ¥T ? 2]

h = Rq,

dC(h+H —_
% = (q:+Q) —(qo + Q@) 1% |,

dh b _ g b o

dt T C H

T=RC 1 -
Solution:

t=to 1t =2
h(t)=e t h(t0)+E_[ e © q;(1)dA
t

0

For a fixed period of time (T) and steps k=0,1,2,...:
-T T
h(k+1) = e h(l) + Rl1 - e 7l g0

So Why Is this a Concern? Difference equations

Difference equations arise in problems where the independent variable, usually
time, is assumed to have a discrete set of possible values. The nonlinear differ-
ence equation

vk +n)=flyk+n—1), vk+n—2), ..., vk+1), vk), u(k +n),

(2.1)
uk+n—1), ..., wk+1), uk)

with forcing function u(k) is said to be of order n because the difference between
the highest and lowest time arguments of y(.) and u(.) is n. The equations we deal
with in this text are almost exclusively linear and are of the form
vik+n)+a,—ppk+n—1)+ -« +ayvk+ 1) +apyk)

=bulk+n)+b, qulk+n—1)+ --- + bjulk + 1)+ byu(k)
We further assume that the coefficients a;, b, i=0, 1, 2, ..., are constant. The
difference equation is then referred to as linear time invariant, or LTL If the forcing
function u(k) is equal to zero, the equation is said to be homogeneous.

Difference equations can be solved using classical methods analogous to those
available for differential equations. Alternatively, z-transforms provide a convenient

approach for solving LTI equations, as discussed in the next section.




Euler’s method*

« Dynamic systems can be approximated’ by recognising that:

x(k+1) —x(k)
T

X(terq) /Z

IR

X

 AsT — 0, approximation
error approaches 0

*Also known as the forward rectangle ruje
tJust an approximation — more on this later T

Difference Equation: Euler’s approximation

d_x:hmw — dr  @eq —ak

dt ~ st—0 5t dat T

For small enough T, this can be used to approximate a continuous controller
by a discrete controller:

1. Laplace transform — differential equation

e.g.
D(s) = ;E; - I‘(i”:b‘)‘) = % +bu= K(% + ae)
2. Differential equation — difference equation
e.g.
7%“,1; U 4 by = K(;‘HIT_ LI Ck)

= upt1 = (1 = bNup + Kepyr + K(al — 1)ep

= —ajukr + boers1 + biex




Difference Equation: Euler’s approximation [2]

Discrete controller recurrence equation:

UL = —aUp_| — AolUj_o — ...+ bger + bjep_1 + ... ‘

coefficients ai,as,...,

Example
Controller:  D(s) = %
8
1
Plant: G(S) = m

@ Step response with continuous controller:

bo,bi, ... depend on T

15

E T
ERRI S
Eost / 1
o /

0 " 1 1 L 1 L
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Time (sec)

K=70,a=2rads™ !, b=10rads™!

Difference Equation: Euler’s approximation [3]

@ Step responses with discrete controller:
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Difference Equation: Euler’s approximation [4]

At high enough sample rates Euler’s approximation works well:
» discrete controller = continuous controller

But if sampling is not fast enough the approximation is poor:
1
T > 30 X [System Bandwidth]

Works, but Not Efficient (n)

Later (May) We consider:
— better ways of representing continuous systems in discrete-time
— ways of analysing discrete controllers directly

Linear Differential System Order

Q(D)y(t) = P(D)f(t)

Q(D)=D"+a,1D* 1 4...+a;D +ap y(t)=P(D)/Q(D) f(t)
P(D) =bpD™ 4 bpm D™ Lo+ 5D + by P(D): M
Q(D): N

e |In practice- m<n (yeS, N is deNominator)

wifm>n:
then the system is an
(m - n)" -order differentiator of high-frequency signals!

* Derivatives magnify noise!




Linear Differential Systems

d"y dﬂ.—ly dy
2 Ton-igmT o targ +aolt) =
g amiy af
bmﬁ+bm—lw+.l-+bla + bof(t) (2.1a)

where all the coeflicients a; and b; are constants. Using operational notation D to
represent d/dt, we can express this equation as

(D" +an D" 1+ +a1D +ag) y(t)
= (b D™ + b1 D™ ok b1 D+ bo) £(2)  (2.1D)

or
Q(D)y(t) = P(D)f(t) (2.1c)
where the polynomials Q(D) and P(D) are
Q(D)=D"+an D"+ ...+ a1D +ap (2.2a)
P(D)=bpD™ + b1 D™ 4.+ 51D + by (2.2b)

)

Discrete-Time

System Analysis
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Simple Controller Goes Digital

d; (+ | controller — plant dy

I— sensor

= |

T
—————————p ; = desiredFront

» I, = distanceFront

s

plant:  y[n] =y[n — 1] — Tu[n — 1]
sensor: y[n| = u[n — 1]
controller:  y[n] = Ku|n]

Complex system behaviors, depending on K

Digitisation

 Continuous signals sampled with period T
« kth control value computed at t, = KT

r)! + S e(KT)  bifference |U(KT) l u(t)> y(t)>

H(s)

r(kT) % equations

y(kT) O\O |

sampler |

>
O
O

A

controller

11



Digitisation

 Continuous signals sampled with period T
« kth control value computed at t, = KT

r(t)! + ek u(kT) 14 0
o P G s = o [T

1 r(kT) ’ . :
|
. T ;
: Ly |
|
: KT l |
' YD) ADC [¢ O "o :
: sampler |
________ controlier ~~ "~~~ 7"

Return to the discrete domain

« Recall that continuous signals can be represented by a
series of samples with period T

X T x(kT)

—

AT T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

12



Zero Order Hold

» An output value of a synthesised signal is held constant until
the next value is ready
— This introduces an effective delay of T/2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

Effect of ZOH Sampling

Lower sample rate ==  more oscillatory response

— Why?
Sampling and reconstruction introduces:

delay in time domain
& phase lag in freq. domain <+ can destabilize the closed loop system

On average u(kT) is delayed by T'/2 relative to u(t) due to the ZOH:

“4 12
4 - ZOH output
/, // = =
e NN u(t)
Vi ,/ \'\\ ™ /

/] g (13
a7 . . v 3T fundamental component
0 T 2T “&— "+ of ZOH output

13



Effect of ZOH Sampling

The ZOH delay of T'/2 (sec) causes
phase lag = wT/2 (rad) at w rads™!
phase lag = /2 =90°  at w = «/T [= Nyquist rate]
phase lag = 7/30 =6°  at w = 7/(15T)

+ 90° phase lag could be catastrophic

x M wamp > 30 X Wnax,

then system bandwidth: wmax < 7/(157),

so the maximum phase lag is less than 6°

usually safe to ignore

* Any time needed to compute u; causes additional delay (!)

Back to the future

A quick note on causality:
* Calculating the “(k+1)th” value of a signal using
y(k+1) =x(k+ 1)+ Ax(k) — By(k)
future value current values

relies on also knowing the next (future) value of x(t).
(this requires very advanced technology!)

 Real systems always run with a delay:
y(k) = x(k) + Ax(k — 1) — By(k — 1)

14



Discrete-Time Impulse Function §[k]

8 k]

{8}

e

LR -

B (k-m)

——

The discrete-time counterpart of the continuous-time impulse function 6{¢) is

§[k], defined by oo
1 =
ti={y 70 (82

This function, also called the unit impulse sequence, is shown in Fig. 8.3a. The time-
shifted impulse sequence &[k—m] is depicted in Fig. 8.3b. Unlike its continuous-time
counterpart &(), this is a very simple function without any mystery.

Later, we shall express an arbitrary input f{k] in terms of impulse components.
The {zero-state) system response to input f[k] can then be obtained a3 the sum of

system responses to impulse components of f[k].

Discrete-Time Unit Step Function u[k]

defined by

(4] = 1 for k=0
HE = 0 for k<0

we need only multiply the signal with «[&].

The discrete-time counterpart of the unit step function u(t) is u[k] (Fig. §4),

(8:2)

If we want a signal to start at k = 0 (3o that it has & zero value for all k < 0),

15



Discrete-Time Exponential y*

(@ (b)

ELEC 3004: Systems 2| March 2017 - 31

Discrete-Time Exponential y*

o oM = yk

e y=etori=Iny

®)

« In discrete-time systems, unlike the continuous-time case,
the form y* proves more convenient than the form e?¥

Why?

« Consider e/ (1 = jQ .. constant amplitude oscillatory)
o D Yk fory = /@

o e/ =1, hence |y| =1

ELEC 3004: Systems 2| March 2017 - 32
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Discrete-Time Exponential y*

« Consider ek
When A: LHP

e Then

s y=e
. y=e)l=ea+]b=eaejb

. |Y| — |eaejb| — |ea| ._.|ejb| =1

A

ELEC 3004: Systems

2| March 2017 - 33

Hint: Use y to Transform s < z: z=e"T

jw
¥ i
3/
X

-E-8-8-6-8—;

s-plane s-plane Symbol z-plane z-plane
w X X % [z| 1 i
{ :{ealj frequency @ 'lxlgd) UmL circle (bj
s=020 O00ona z=r21
s=0<0 000 z=r0<r<1
5= —(wn +ium1=C* BLA z=relfwhere r = exp(—(w,T)
= —a+jbh =e-oT,
6 =w T\/_(’ = 4T
Constant damping ratio Logarithmic spiral
if ¢ is fixed and w,
varies
s=xj(7fT) + 0,0 0 ~rmmmnmnn z=-r

ELEC 3004: Systems

2| March 2017 - 34
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z Transforms
(Digital Systems Made eZ)

Review and Extended Explanation

ELEC 3004: Systems 21 March 2017 - 36
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The z-transform

« The discrete equivalent is the z-Transformf:
20} = ) fH)z™* =F(2)
k=0

and

Z{f(k—=D}=z"'F(2)

XK) — F@ — vk

Convenient!

+This is not an approximation, but approximations are easier to derive

The z-Transform

* It is defined by: _
z =rel¥

Or in the Laplace domain:
z=e5T

z

« Thus: Y(z)= > h[kz"* or  yn]«—=Y(2)
k=—nc

» LE., It’s a discrete version of the Laplace:
z
fkT) = e~ = Z{f(k)} = pr—

19



The z-transform

In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(2)
1 1 z
S z—1
1 kT Tz
s2 (z—1)2
1 e—akT z
s+a z—e T
1 kTe~akT zTe T
(s+a)? (z — e-aT)2
1 sin(akT) zsinal
s2 4 g2 z2—(2cosal)z+1

Zero-order-hold (ZOH)

M x(KT) [ Zero-order | h(t)

Sampler Hold _—

Assume that the signal x(t) is zero
h(t) is related to x(t) as follows;

r t<0, the output
h(t) = 2z(0)[1(t) = 1(t —T)] +2=(T)[1(t = T) - 1(t - 2T)] + - --

= i x(KT)[1(t - kT) - 1(t - (k+1)T)]
k=0

20



Transfer function of Zero-order-hold (ZOH)

* Recall the Laplace Transforms (£) of:
L)) =1 LIf(t—kT)] = F(S)e—kTs

& e—kTs
Lt —kD)]=e % L1t —kT)] =

» Thus the £ of h(t) becomes:

C[R(2)] = E[i x(KT)[1(t - KT) - 1(t - (k+1)T)]]
k=0

) o0 —kTs  —(k+1)Ts
= S e(KT)LI(t - KT) - 1(t - (k+ D)D) = 3 (kD) e _ DT ]

k=0 k=0 8 5

00 —kT's —(k s [e=] —Ts —Ts oo
= S 2(kT)- o — e Ts 3 2 (kT L= ehrs 1€ S a(kT)e *Ts

k=0 k=0 k=0

Transfer function of Zero-order-hold (ZOH)

... Continuing the £ of h(t) ...

C[R()] = L[> x(KT)[1(t - KT) - 1(t - (k+1)T)]]

k=0 o0 e—kTs  o—(k+1)Ts

z(KT)L[1(t - KT) - 1(t - (k4+1)T)] = Z z(kT)[ - ]

0 k=0 8 8

C —kT's —(k+1)Ts 00 —~Ts -Ts o0

.’I‘(k‘T)e e e‘ ) = Z m(kT)ie_kTS — 17; Z x(k’T)e_kTS
s k=0 8 5 k=0

T
gk

e

gk

k

Il
=}

o0

S a(kT)5(t — kT)

k=0

o0
= > z(kT)e *Ts
k=0

- X(s)=L

_Ts oo _ —TIs
CHE) = L] =T Y a(kT)e T = ()
k=0
=» Thus, giving the transfer function as:
H(: 1—eTs
GzoH(s) = ng = 2| Guon(x) =

(1 - e_aT)

21



Coping with Complexity

Transfer functions help control complexity
— Recall the Laplace transform:

LF©) = f FOe=stdt = F(s)
0

where

L{f ()} = sF(s)

X(t) ——{ H() — y()

* Is there a something similar for sampled systems?

S-Plane to z-Plane [1/2]

s-plane z-plane

f

! Re(z)
5 =0+ jw
a = constant

z=e%e"

|z| = ¢°T = constant

Alm(s) Im(z)
> =T
e
/ . | L,
0 Re(s) -1 1 Re(z)
5 =0+ jw
w = constant Y o
-1 “« =

arg(z) = wT constant

22



S-Plane to z-Plane [2/2]

24 Cwos+wig =0
4
s =—Cwo £ j/1—CPwo

(=05 Alm(s)

0 Re(

C=0.7
C=05

s = —Cwo + jy/1 — (2wo: ¢ = constant

Pole locations for constant damping ratio ¢ < 1

Im(s)
\Jﬁ
0

0
cosl =(

¢=07 2 — 5T 1 ¢=0.7
=
s) -1 Q

transforms

Relationship with s-plane poles and z-plane

If F(s) hasapoleats=a F(s)

What about transfer functions?
G(s)

S5

G(z):u—z-')z{_} PrEy

b
+ (s+a)s+b)
If G(s) has poles s = a; a
then G(z) has poles z = e®iT % + a?
b
but the zeros are unrelated (s +a)2+ b2

e T gin bkT

F(KT) F(2)
then F(z) has a pole at z = &% | :
1(kT)
z—1
' : Tz
52 kT —
consistent with z = ¢’ s J -
—akT z
s z — e—aT
! Ize— T
kT —akT
(s +a)? € —

zsinal

22 —(2cosaT)z + 1

sinakT

ze” Tsin bT

z2 — 2~ T(cos bT)z + e—2aT

23



s <> Z: Pulse Transfer Function Models

E(z) U(z) = D(z) E(z)
D(=z)
e(kT) 7 u(kT) =7
 Pulse in Discrete is equivalent to Dirac-6

1 fork=0
Ef =
0 fork =0

u(t - ) ’
e o e SO e Y

G(z)
>
G(s G(s
G(z)=(1-2z"YHZ L—l{ ( )} =(1-z1Yz {Q}
S S
t=kT
Source: Oxford 2A2 Discrete Systems, Tutorial Notes p. 26

z-Transforms for Difference Equations

« First-order linear constant coefficient difference equation:

First-order linear constant coefficient difference equation:

y[n] = ay[n — 1] + bu|n]

h[n]

a

T n

W] = {ba n =0,

0 otherwise.

H(z}szakg_kzbZ(g)k = l—l;z—l' when |z| > |al.

24



z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

y[n] = ay[n — 1] + bu|n|

y[n] — ay[n — 1] = bu|n]

A

-+

Y(z) —az 'Y (2) = bU(2)

_Y(z) b . "
) = UG) ~ 1= as_l,when does it converge?

Properties of the the z-transform

» Some useful properties
— Delay by n samples: Z{f (k —n)} = z7"F(2)
— Linear: Z{af (k) + bg(k)} =aF(z) + bG(2)
— Convolution: Z{f (k) * g(k)} = F(2)G(2)

So, all those block diagram manipulation tools you know and love
will work just the same!

25



The z-Transform

* ltis defined by:

z =rel¥

 Orin the Laplace domain:

z=eT

» Thatis - it is a discrete version of the Laplace:
Z
fkT) = e~ = Z{f(k)} = pr—

The z-Transform [2]

e Thus: o
Y(2)= Y hlklz yln] +5 Y (2)

 z-Transform is analogous to other transforms:
20} = ) fU0z* = F@)
k=0

and

Z{f(k =1} =z7"F(2)
~ Giving:

XK) — F@ — vk

26



The z-Transform [3]

» The z-Transform may also be considered from the
Laplace transform of the impulse train representation of
sampled signal

u*(t) == uOS(t) + U16(t - T) + ...+ uk(t_kT) + ...

- Z weS(t — kT)
k=0
U'(s) =up +use T+ +ue Sk + ..

= z uy e kT

The z-transform

* In practice, you’ll use look-up tables or computer tools (ie. Matlab)
to find the z-transform of your functions

F(s) F(kt) F(z)
1 1 z
S z—1
1 kT Tz
52 (z—1)2
1 e—akT z
s+a z—e T
1 kTe=akT zTeaT
(s + a)? (z — e—aT)2
1 sin(akT) zsinaT
2 + a2 72— (2cosal)z+ 1

27



z-Transform Example

* Obtain the z-Transform of the sequence:
x[k] ={3,0,1,4,1,5,..}

« Solution:
X(z2)=3+z?%4+4z3+z*+52z7°
The z-Plane

z-domain poles and zeros can be plotted just
like s-domain poles and zeros (of the £):

* S-plane: e z=¢€°T Plane
Img(s) Img(z)
X
» Re(s) ®
X
— A—Plane — v —Plane

Re(2)

28



Deep insight # |

The mapping between continuous and discrete poles and
zeros acts like a distortion of the plane

max frequency
mg(s) H Img(2)

v-plane Stability

» For ay-Plane (e.g. the one the z-domain is embedded in)
the unit circle is the system stability bound

Img(s) Img(2)

’

unit circle

} | )
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v-plane Stability

e That is, in the z-domain,

the unit circle is the system stability bound

Img(s)

"
=

Re(s)

v Img(2) @

-
N

>
} . Re(z)

z-plane stability

« The z-plane root-locus in closed loop feedback behaves just

like the s-plane:

Img(s)

Re(s)

Img(2) @ |

X

Re(2)
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Region of Convergence

+ For the convergence of X(z) we require that

2 }az_] ]m <
n=0

« Thus, the ROC is the range of values of z for which |az|< |
or, equivalently, |z| > |a|. Then

N ;i

N
N\
NN

Az ma
7 > ’/,/ //

as1

.
N

An example!

+ Back to our difference equation:

y(k) =x(k) + Ax(k — 1) — By(k — 1)
becomes

Y(z2) =X(2) + Az71X(2) — Bz7'Y(2)
(z+B)Y(2) =(z+4A)X(2)
which yields the transfer function:

Y(z) z+A
X(z) z+B

Note: It is also not uncommon to see systems expressed as polynomials in z™"
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This looks familiar...

» Compare:
YG) _ stz @) _ z+A
X(s)  s+1 X(z)  z+B

How are the Laplace and z domain representations related?

- Linearity:

1,2 s e
a1y1[n] + agya[n] +— a1Y1(2) + aoYa(z)

Z-Transform Properties: Time Shifting

o . wa[n] =yln — nol
_ RN 1) Vg oo
y[n —no] «— 27"Y (2) Yo(e) = 3 wlk —nolo™

k=—00

- Z y:i]z—([+n(3)

l=—0o
. :3—71[;};(3)
» Two Special Cases:

« z'%: the unit-delay operator:

xn — 1]« 27 1X(2) R'=RN{0< ||}

* Z: unit-advance operator:

x[n+ 1] = 2X(2) R'=RN{|z] <}
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More Z-Transform Properties

« Time Reversal

x[n] < X(z) ROC =R

« Multiplication by z"

x[n] = X(z) ROC = R

(z i
z:J!-‘W”J"‘XJ% R'=|z9|R
\ <0/

« Multiplication by n (or
Differentiation in z):

xlnl ==Xz}  ROC=R

dX(z, .
nx[n]ﬂfz—() R' =R
dz

« Convolution

x,[n] < X,(z) ROC = R,
X,[n] < X,(2) ROC = R,

x,[n] * x,[n] < X,(2)X,(2) R'DR NR,

The z-plane [ for all pole systems |

» We can understand system response by pole location in the z-

plane

[Adapted from Franklin, Powell and Emami-Naeini]

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-
plane

rr'/‘

.\'\.\* ........... P
%99 o o

Effect of pole positions

» We can understand system response by pole location in the z-
plane

AN AN

NARVARY A EAVARY/ Ny

\\ Img(z)
N

Increasing frequency { K

Re(z)
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Effect of pole positions

» We can understand system response by pole location in the z-
plane

AAAAMNAARA e AN
VY VVVV|[VYT

Re(z)

Z-Plane Response for 2™ Order Systems:
Damping ({) and Natural frequency (w)

z=eSTwheres = —(w, + jw,/1 — (2

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,

“',

-1.0 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1.0
[Adapted from Franklin, Powell and Emami-Naeini]
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Recall dynamic responses

+ Ditto the z-plane:

Img(2) More ®
1 Oscillatory >"<
More damped 2( \
f— = Pure integrator
02— < : Re(2)
N — Faster !

%

/ \More unstable”

Deep insight #?2

+ Gains that stabilise continuous systems can actually
destabilise digital systems!

4+ Img(s) Img(2)

X9

Re(s) “ X Re(2)
\ i1
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Sampling & ANTIALIASING

(Recap)

ELEC 3004: Systems

21 March 2017 - 73

daV (dignals as Vectors):
Signals as Complex Numbers = Phasors

Positive Frequency Y
component [ﬁ Rejg
Rsin(6) R
Rcos(0) X
Re!? = (Rcos @, Rsin )
= Rcosé@+ JRsing
= R(cosé@+ jsinb)
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Nyquist sampling theorem

What continuous signal is represented by a given set of samples?

Infinitely many continuous signals have the same discrete samples:

An answer is provided by Nyquist's sampling theorem:

sampling frequency is more than twice the bandwidth of y(t).

A signal y(t) is uniquely defined by its samples y(kT') if the

Nyquist sampling theorem [2]

Example — Sampled sinusocidal signal
Sample cos(wt) at frequency ws = 27 /T

y(t) = cos(wt) Sample, y(kT) = cos(kwT) = cos(2mk w/w,)
Identical samples are obtained from a sinusoid with frequency w, — &:

cos((w, —@)t) Sampl cos

(k(ws —&)T) = cos(2mk — 2mk & /w,)

= cos(2mk & /w,)
1
\‘ ’ \\ - \\
'
0.5 v K ' , ' 1 _cos(dt)
. ol \\ l, \ ’l \
v ! v ,
o5k N / \ K L cos((ws — @)t)
N A ’ “/

- ot f L L

0 02 04 06 08

t
The spectrum of y(kT) contains an alias at frequency w. — & !!

(a copy of the original signal y(¢) shifted to a different frequency)
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Nyquist sampling theorem & alliasing

Example — Sampled sinusoidal signal

By the same argument, y(kT') contains an infinite number of aliases at
ws £, 2ws @, 3ws £ w,...

Y(w)

spectrum
N N
v v } . 1 > (1)

-~ " A ~ ! ~
0| 0] W0 ©y OB 200 20, 20+D

The Nyquist sampling theorem requires ws > 2w
Jl
y(t) and alias spectra do not overlap
y(t) can be recovered without distortion from y(kT') (via low-pass filter)

Aliasing: Nonuniqueness of Discrete-Time Sinusoids [p. 553]

al.is
e i .
oA B i}
_ H e X
B A - |
[ i A Tx
nd_ _SEm
H b s
: .
A - - | " H
| Ig}: . '_ _‘: ir .
n IR~ .
L R P T hon
T T >
i:i 4n dn ;:7 7t !Iir: :":l' 2;5
lay o—- oF

Fig. 811 A i | .
s, graphical artifice to determine the tedused frequency of a discrete-time
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Complex Numbers and Phasors

Negative frequency Y
component
Rcos(—6)
i 0
Rsin(-6) R X
, Re 1’

Re /% = (Rcos(-6), Rsin(-0))
= Rcos(-6) + JRsIin(-6)
= R(cos & — jsinH)

Positive and Negative Frequencies

» Frequency is the derivative of phase
more nuanced than :

1
— = repetition rate
T

» Hence both positive and negative frequencies are possible.

» Compare
— velocity vs speed
— frequency vs repetition rate
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Negative Frequency

* Q: What is negative frequency?
A: A mathematical convenience

Trigonometrical FS
— periodic signal is made up from
— sum 0 to o of sine and cosines ‘harmonics’

Complex Fourier Series & the Fourier Transform

— use exp( jwt) instead of cos(wt) and sin(wt)
— signal is sum from 0 to o« of exp(+jwt)

— same as sum -oo to o of exp(—jwt)

— which is more compact (i.e., less LaT XI!)

Next Time...

 Digital Systems

* Review:
— Chapter 8 of Lathi

« A signal has many signals ©
[Unless it’s bandlimited. Then there is the one o]

@/
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Modulation

Analog Methods:

* AM - Amplitude modulation
— Amplitude of a (carrier) is

modulated to the (data) /\/\&g ]
« FM - Frequency modulation e
— Frequency of a (carrier) signal I
is varied in accordance to the AN PRI e
amplitude of the (data) signal S
* PM — Phase Modulation
Source: http://en.wikipedia.org/wiki/Modulation
Modulation [Digital Methods] e *L
Start with a “symbol” & place it on a channel
« ASK (amplitude-shift keying) j

oo 11 1] oo S o ]
(’ﬂ 00111 oﬂo 0 time j{ié} L1 e
» FSK (frequency-shift keying)

\ Nh N ARAR Ann
J L il i i / "”‘| il
NanrAvannrRyaill
. RYAlyRY
| | ! ! IJ\ I /AT I\
Data

» PSK (phase-shift keying)
 QAM (quadrature amplitude modulation)
s(t) = A - cos(we + (1))

= x;(t) cos(w,t) + x4(t) sin(w,t)

l[;ﬂ
Source: http://en.wikipedia.org/wiki/Modulation | http://users.ecs.soton.ac.uk/sqc/EL 334 | http://en.wikipedia.org/wiki/Constellation_diagram
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Modulation [Example — V.32bis Modem]

Figure 10.13 Illustration of the QAM constellation for a V.32bis dialup
modem.

Source: Computer Networks and Internets, 5e, Douglas E. Comer

Multiple Access (Channel Access Method)

+ Send multiple signals on 1 to N channel(s)
— Frequency-division multiple access (FDMA)
— Time-division multiple access (TDMA)
— Code division multiple access (CDMA)
— Space division multiple access (SDMA)

« CDMA:
— Start with a pseudorandom code (the noise doesn’t know your code)

T

Source: http://en.wikipedia.org/wiki/Code_division_multiple_access
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