



#### Systems Theory: Linear Differential Systems

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 4

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

March 9, 2017

(CC)) BY-NO-SA

2017 School of Information Technology and Electrical Engineering at The University of Queensland

## Yesterday: UN International Women's Day 2017



ELEC 3004: Systems

| 28-FebIntroduction                                                                              |  |
|-------------------------------------------------------------------------------------------------|--|
| 201 commodation                                                                                 |  |
| 2-MarSystems Overview                                                                           |  |
| 7-MarSystems as Maps & Signals as Vectors                                                       |  |
| 9-Mar Systems: Linear Differential Systems                                                      |  |
| 14-MarSampling Theory & Data Acquisition                                                        |  |
| 3 16-Mar Antialiasing Filters                                                                   |  |
| 4 21-Mar Discrete System Analysis                                                               |  |
| 23-Mar Convolution Review                                                                       |  |
| 28-Mar Frequency Response                                                                       |  |
| 30-MarFilter Analysis                                                                           |  |
| 4-Apr Digital Filters (IIR)                                                                     |  |
| 6-Apr Digital Windows                                                                           |  |
| 6 11-Apr Digital Filter (FIR)                                                                   |  |
| 13-AprFFT                                                                                       |  |
| 18-Apr                                                                                          |  |
| 20-Apr Holiday                                                                                  |  |
| 25-Apr                                                                                          |  |
| 7 27-Apr Active Filters & Estimation                                                            |  |
| 2-May Introduction to Feedback Control                                                          |  |
| 4-May Servoregulation/PID                                                                       |  |
| 9-May Introduction to (Digital) Control                                                         |  |
| 11-May Digitial Control                                                                         |  |
| 11 16-May Digital Control Design 18-May Stability                                               |  |
| 23-May Digital Control Systems: Shaping the Dynamic Response                                    |  |
| 12 25-May/Digital Control Systems: Snaping the Dynamic Response 25-May/Applications in Industry |  |
| 30-May System Identification & Information Theory                                               |  |
| 13 1-JunSummary and Course Review                                                               |  |

## Follow Along Reading:



B. P. Lathi
Signal processing
and linear systems
1998
TK5102.9.L38 1998

• Chapter 2:

# **Time-Domain Analysis of Continuous-Time Systems**

- § 2.1 Introduction
- § 2.3 The Unit Impulse Response
- § 2.6 System Stability
- § 2.7 Intuitive Insights into System Behaviour
- § 2.9 Summary

ELEC 3004: Systems

# Linear Differential Systems

ELEC 3004: Systems

9 March 2017 - 5

#### **Linearity: Linear Equations**

• Consider system of linear equations:

$$\begin{array}{rclcrcrcr} y_1 & = & a_{11}x_1 & + & a_{12}x_2 & + \cdots + & a_{1n}x_n \\ y_2 & = & a_{21}x_1 & + & a_{22}x_2 & + \cdots + & a_{2n}x_n \\ & \vdots & & & & & & \\ y_m & = & a_{m1}x_1 & + & a_{m2}x_2 & + \cdots + & a_{mn}x_n \end{array}$$

• This can be written in a matrix form as y = Ax, where

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Source: Boyd, EE263, Slide 2-2

0 Marrala 2017

ELEC 3004: Systems

#### Linearity: Linear Functions

- A function  $f \mathbb{R}^n \to \mathbb{R}^m$  is linear if:
  - f(x+y) = f(x) + f(y),  $\forall x, y \in \mathbf{R}^n$
  - $f(\alpha x) = \alpha f(x), \forall x \in \mathbf{R}^n \ \forall \alpha \in \mathbf{R}$
- That is, *Superposition* holds:



ELEC 3004: Systems

9 March 2017 -

#### Linearity: Linear functions and Matrix Multiplication

Consider a  $f: \mathbb{R}^n \to \mathbb{R}^m$ given by f(x) = Ax, where  $A \in \mathbb{R}^{m \times n}$ 

As matrix multiplication function if f is <u>linear</u>, we may now say:

- **converse is true**: <u>any</u> linear function  $f: \mathbb{R}^n \to \mathbb{R}^m$  can be written as f(x) = Ax, for dome  $A \in \mathbb{R}^{m \times n}$
- Representation via matrix multiplication is <u>unique</u>: for any linear function  $\hat{f}$  there is only one matrix  $\hat{A}$  for which  $\hat{f}(x) = \hat{A}x$  for all x
- y = Ax is a concrete representation of a generic linear function

ELEC 3004: Systems

#### Linearity: Interpretations

- y is measurement or observation; x is unknown to be determined
- x is an "input" or "stated action"; y is "output" or "result"

   In controls this "x" is sometimes "separated" into x and u such that x is the state and the u is the action done by the controller
- A function/transformation that maps  $x \in \mathbb{R}^n$  into  $y \in \mathbb{R}^m$
- $\rightarrow$  of A (or  $a_{ij}$ ):
- $a_{ij}$  is a gain factor from  $j^{th}$  input  $(x_j)$  to  $i^{th}$  output  $(y_i)$   $i^{th}$  row of A concerns  $i^{th}$  **output** ("row-out to sea")  $j^{th}$  column of A concerns  $j^{th}$  **input** ("col-in to land")

- $a_{34} = 0$  means 3<sup>rd</sup> output  $(y_3)$  doesn't depend on 4<sup>th</sup> input  $(x_4)$
- $|a_{34}| \gg |a_{3j}|$  for  $j \neq 4$  means  $y_3$  depends mainly on  $x_4$
- |a<sub>34</sub>| » |a<sub>i4</sub>| for i ≠ 3 means x<sub>4</sub> affects mainly y<sub>3</sub>
   If A is diagonal, then i<sup>th</sup> output depends only on i<sup>th</sup> input
- If A is lower triangular [i.e.,  $a_{ij} = 0$  for i < j], then the  $y_i$  only depends on  $x_1, \dots, x_i$
- → Nothing tells you something:
- The sparsity pattern of A [i.e, zero/nonzero entries], shows which  $x_i$  affect which  $y_i$
- Matlab: spy(A) [or just try spy]

ELEC 3004: **Systems** 

#### Linear Dynamic [Differential] System

≡ LTI systems for which the input & output are linear ODEs

$$a_0y + a_1\frac{dy}{dt} + \dots + a_n\frac{d^ny}{dt^n} = b_0x + b_1\frac{dx}{dt} + \dots + b_m\frac{d^mx}{dt^m}$$

$$a_0Y(s) + a_1sY(s) + \dots + a_ns^nY(s) = b_0X(s) + b_1sX(s) + \dots + b_ms^mX(s)$$
  
 $A(s)Y(s) = B(s)X(s)$ 

Total response = Zero-input response + Zero-state response

Initial conditions

**External Input** 



#### Linear Systems and ODE's

• Linear system described by differential equation

$$a_0 y + a_1 \frac{dy}{dt} + \dots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \dots + b_m \frac{d^m x}{dt^m}$$

· Which using Laplace Transforms can be written as

$$a_0Y(s) + a_1sY(s) + \dots + a_ns^nY(s) = b_0X(s) + b_1sX(s) + \dots + b_ms^mX(s)$$
  
 $A(s)Y(s) = B(s)X(s)$ 

where A(s) and B(s) are polynomials in s







- $\delta$ (t): Impulsive excitation
- h(t): characteristic mode terms

 $\left(D^2 + 3D + 2\right)y(t) = Dx(t)$ 

This is a second-order system (N = 2) having the characteristic polynomial  $\left(\lambda^2+3\lambda+2\right)=(\lambda+1)(\lambda+2)$ 

(2.26a)

Differentiation of this equation yields

 $\dot{y}_n(t) = -c_1 e^{-t} - 2c_2 e^{-2t}$ 

The initial conditions are [see Eq. (2.24b) for N = 2]  $\dot{y}_{a}(0) = 1$  and  $y_{a}(0) = 0$ 

 $1 = -c_1 - 2c_2$ 

Solution of these two simultaneous equations yields  $c_1=1$  and  $c_2=-1$ 

Moreover, according to Eq. (2.25), P(D) = D, so that  $P(D)y_{\rm R}(t) = Dy_{\rm R}(t) = \dot{y}_{\rm R}(t) = -e^{-t} + 2e^{-2t}$ 

Also in this case,  $b_0$  = 0 [the second-order term is absorbed]  $h(t) = [P(D)y_s(t)]u(t) = (-e^{-t} + 2e^{-2t})u(t)$ 



#### First Order Systems

#### First order systems

$$ay' + by = 0$$
 (with  $a \neq 0$ )

righthand side is zero:

- called autonomous system
- solution is called *natural* or *unforced response*

can be expressed as

$$Ty' + y = 0 \quad \text{or} \quad y' + ry = 0$$

where

- T = a/b is a time (units: seconds)
- r = b/a = 1/T is a rate (units: 1/sec)



9 March 2017 - 13

#### First Order Systems

#### Solution by Laplace transform

take Laplace transform of Ty' + y = 0 to get

$$T(\underbrace{sY(s)-y(0)}_{\mathcal{L}(y')})+Y(s)=0$$

solve for Y(s) (algebra!)

$$Y(s) = \frac{Ty(0)}{sT+1} = \frac{y(0)}{s+1/T}$$

and so  $y(t) = y(0)e^{-t/T}$ 

ELEC 3004: Systems

#### First Order Systems

solution of Ty' + y = 0:  $y(t) = y(0)e^{-t/T}$ 

if T > 0, y decays exponentially

- $\bullet$  T gives time to decay by  $e^{-1} \approx 0.37$
- 0.693T gives time to decay by half  $(0.693 = \log 2)$
- 4.6T gives time to decay by 0.01 (4.6 = log 100)

if T < 0, y grows exponentially

- |T| gives time to grow by  $e \approx 2.72$ ;
- 0.693|T| gives time to double
- 4.6|T| gives time to grow by 100



9 March 2017 - 1!

#### First Order Systems

#### **Examples**

#### simple RC circuit:



circuit equation: RCv'+v=0

solution:  $v(t) = v(0)e^{-t/(RC)}$ 

#### population dynamics:

- y(t) is population of some bacteria at time t
- $\bullet$  growth (or decay if negative) rate is y'=by-dy where b is birth rate, d is death rate
- $y(t) = y(0)e^{(b-d)t}$  (grows if b > d; decays if b < d)

ELEC 3004: Systems

#### Second Order Systems

#### Second order systems

$$ay'' + by' + cy = 0$$

assume a > 0 (otherwise multiply equation by -1)

solution by Laplace transform:

$$a(\underbrace{s^2Y(s)-sy(0)-y'(0)}_{\mathcal{L}(y'')})+b(\underbrace{sY(s)-y(0)}_{\mathcal{L}(y')})+cY(s)=0$$

solve for Y (just algebra!)

$$Y(s) = \frac{asy(0) + ay'(0) + by(0)}{as^2 + bs + c} = \frac{\alpha s + \beta}{as^2 + bs + c}$$

where  $\alpha = ay(0)$  and  $\beta = ay'(0) + by(0)$ 



9 March 2017 - 1

### Second Order Systems

so solution of ay'' + by' + cy = 0 is

$$y(t) = \mathcal{L}^{-1} \left( \frac{\alpha s + \beta}{as^2 + bs + c} \right)$$

- $\chi(s) = as^2 + bs + c$  is called *characteristic polynomial* of the system
- $\bullet$  form of  $y=\mathcal{L}^{-1}(Y)$  depends on roots of characteristic polynomial  $\chi$
- ullet coefficients of numerator lpha s + eta come from initial conditions

ELEC 3004: Systems





# Second Order Response Unit Step Response Terms



- Delay time, t<sub>d</sub>: The time required for the response to reach half the final value
- Rise time, t<sub>r</sub>: The time required for the response to rise from 10% to 90%
- Peak time,  $t_p$ : The time required for the response to reach the first peak of the overshoot
- Maximum (percent) overshoot, Mp:

$$\text{Maximum percent overshoot} = \frac{c(t_p) - c(\infty)}{c(\infty)} \times 100\%$$

• Settling time,  $t_s$ : The time to be within 2-5% of the final value









# Example of 2<sup>nd</sup> Order: RLC Circuits



- KCL:  $\frac{V_s(t) V_c(t)}{R_1} = C\frac{d}{dt}V_c(t) + i(t)$
- KVL:  $V_{c}(t) = L\frac{d}{dt}i(t) + R_{2}i(t)$
- Combining:

$$V_s(t) = R_1 L C \frac{d^2}{dt^2} i(t) + (L + R_1 R_2 C) \frac{d}{dt} i(t) + (R_1 + R_2) i(t)$$

ELEC 3004: Systems



# Multi-Domain-sional Nature of Multidimensional Signals & Systems

ELEC 3004: Systems

9 March 2017 - 28

## **Equivalence Across Domains**

#### Table 2.1 Summary of Through- and Across-Variables for Physical Systems

| System                      | Variable<br>Through<br>Element   | Integrated<br>Through-<br>Variable | Variable<br>Across<br>Element              | Integrated<br>Across-<br>Variable                    |
|-----------------------------|----------------------------------|------------------------------------|--------------------------------------------|------------------------------------------------------|
| Electrical                  | Current, i                       | Charge, q                          | Voltage difference, $v_{21}$               | Flux linkage, $\lambda_{21}$                         |
| Mechanical<br>translational | Force, $F$                       | Translational momentum, P          | Velocity difference, $v_{21}$              | Displacement<br>difference, y <sub>21</sub>          |
| Mechanical rotational       | Torque, T                        | Angular momentum, h                | Angular velocity difference, $\omega_{21}$ | Angular<br>displacement<br>difference, $\theta_{21}$ |
| Fluid                       | Fluid volumetric rate of flow, O | Volume, V                          | Pressure difference, P <sub>21</sub>       | Pressure momentum, $\gamma_{21}$                     |
| Thermal                     | Heat flow rate, $q$              | Heat energy, $H$                   | Temperature difference, $\mathcal{T}_{21}$ |                                                      |

Source: Dorf & Bishop, Modern Control Systems,  $12^{th}$  Ed., p. 73

ELEC 3004: Systems

| Type of<br>Element | Physical<br>Element    | Governing<br>Equation                | Energy E or<br>Power ℱ                      | Symbol                                                                                                                                                                                |
|--------------------|------------------------|--------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inductive storage  | Electrical inductance  | $v_{21} = L \frac{di}{dt}$           | $E = \frac{1}{2}Li^2$                       | $v_2 \circ \overset{L}{\longleftarrow} \circ v_1$                                                                                                                                     |
|                    | Translational spring   | $v_{21} = \frac{1}{k} \frac{dF}{dt}$ | $E = \frac{1}{2} \frac{F^2}{k}$             | $v_2 \circ \bigcap^k \circ F$                                                                                                                                                         |
|                    | Rotational spring      |                                      |                                             | $\omega_2 \circ \bigcap^k \circ \bigcap^{\omega_1} T$                                                                                                                                 |
|                    | Fluid inertia          |                                      |                                             | $P_2 \circ \bigcap_{P_1} Q \circ P_1$                                                                                                                                                 |
|                    | Electrical capacitance | $i = C \frac{dv_{21}}{dt}$           | $E = \frac{1}{2}Cv_{21}^2$                  | $v_2 \circ \stackrel{i}{\longrightarrow}   \stackrel{C}{\longrightarrow} v_1$                                                                                                         |
| Capacitive storage | Translational mass     | $F = M \frac{dv_2}{dt}$              | $E = \frac{1}{2}Mv_2^2$                     | $F \longrightarrow 0$ $v_1 = constant$                                                                                                                                                |
|                    | Rotational mass        | $T=J\frac{d\omega_2}{dt}$            | $E = \frac{1}{2}J\omega_2^2$                | $T \xrightarrow{\bullet \circ}_{\omega_2} \overline{J} \xrightarrow{\omega_1}_{\circ} =$ constant                                                                                     |
|                    | Fluid capacitance      | $Q = C_f \frac{dP_{21}}{dt}$         | $E = \frac{1}{2} C_f P_{21}{}^2$            | $Q \longrightarrow Q \longrightarrow$ |
|                    | Thermal capacitance    | $q = C_t \frac{d\mathcal{I}_2}{dt}$  | $E=C_t\mathcal{I}_2$                        | $q \xrightarrow{\mathcal{G}_l} \overset{\circ}{\mathcal{G}_l} = \overset{\circ}{\mathcal{G}_l} = \overset{\circ}{\mathcal{G}_l}$                                                      |
| Energy dissipators | Electrical resistance  | $i = \frac{1}{R}v_{21}$              |                                             | $v_2 \circ \stackrel{R}{\longrightarrow} i \circ v_1$                                                                                                                                 |
|                    | Translational damper   | $F = bv_{21}$                        | $\mathcal{P}=b{v_{21}}^2$                   | $F \xrightarrow{v_2} \overline{\bigcup_b} v_1$                                                                                                                                        |
|                    | Rotational damper      | $T = b\omega_{21}$                   | $\mathcal{P}=b\omega_{21}{}^2$              | $T \xrightarrow{\omega_2} b \circ \omega_1$                                                                                                                                           |
|                    | Fluid resistance       | $Q = \frac{1}{R_f} P_{21}$           | $\mathcal{P} = \frac{1}{R_f} P_{21}^2$      | $P_2 \circ \longrightarrow P_1$                                                                                                                                                       |
|                    | Thermal resistance     | $q = \frac{1}{R_t} \mathcal{T}_{21}$ | $\mathcal{P}=\frac{1}{R_t}\mathcal{T}_{21}$ | $\mathcal{T}_2 \circ \overset{R_l}{\longrightarrow} q \circ \mathcal{T}_1$                                                                                                            |
|                    |                        |                                      | Source                                      | ce: Dorf & Bishop, Modern Control Systems,                                                                                                                                            |



#### Example: 2<sup>nd</sup> Order Active RC Filter (Sallen–Key)

• 2<sup>nd</sup> Order System Sallen–Key Low-Pass Topology:



Build this for Real in **ELEC 4403** 

- KCL:  $\frac{v_{\text{in}} v_x}{R_1} = C_1 s \left(\overline{v_x} v_{\text{out}}\right) + \frac{v_x v_{\text{out}}}{R_2}$
- Combined with Op-Amp Law:  $\frac{v_{\text{in}}-v_{\text{out}}(C_2sR_2+1)}{R_1} = C_1sv_{\text{out}}(C_2sR_2+1) v_{\text{out}} + \frac{v_{\text{out}}(C_2sR_2+1)-v_{\text{out}}}{R_2}$
- Solving for Gives a 2<sup>nd</sup> order System:

$$\frac{v_{out}}{v_{in}} = \frac{1}{C_1 C_2 R_1 R_2 s^2 + C_2 (R_1 + R_2) s + 1}$$

ELEC 3004: Systems

0 Manah 2017 **22** 

#### **Motors**

5. DC motor, field-controlled, rotational actuator



$$\frac{\theta(s)}{V_f(s)} = \frac{K_m}{s(Js+b)(L_fs+R_f)}$$

7. AC motor, two-phase control field, rotational actuator



$$\frac{\theta(s)}{V_c(s)} = \frac{K_m}{s(\tau s + 1)}$$
$$\tau = J/(b - m)$$

m = slope of linearized torque-speed curve (normally negative)

ELEC 3004: Systems

## Mechanical Systems

15. Accelerometer, acceleration sensor



$$\begin{aligned} x_{o}(t) &= y(t) - x_{in}(t), \\ \frac{X_{o}(s)}{X_{in}(s)} &= \frac{-s^2}{s^2 + (b/M)s + k/M} \end{aligned}$$

For low-frequency oscillations, where

$$\omega < \omega_n$$
,

$$\frac{X_{\rm o}(j\omega)}{X_{\rm in}(j\omega)} \simeq \frac{\omega^2}{k/M}$$

ELEC 3004: Systems

0 Manah 2017 **2** 

# Thermal Systems

16. Thermal heating system



$$\frac{\mathcal{I}(s)}{q(s)} = \frac{1}{C_t s + (QS + 1/R_t)}, \text{ where}$$

 $\mathcal{T} = \mathcal{T}_{o} - \mathcal{T}_{e} = \text{temperature difference} \\ \text{due to thermal process}$ 

 $C_t$  = thermal capacitance

Q =fluid flow rate = constant

S = specific heat of water

 $R_t$  = thermal resistance of insulation

q(s) = transform of rate of heat flow of heating element

ELEC 3004: Systems



# Example: Quarter-Car Model (2)

$$\begin{split} \ddot{x} + \frac{b}{m_1}(\dot{x} - \dot{y}) + \frac{k_s}{m_1}(x - y) + \frac{k_w}{m_1}x &= \frac{k_w}{m_1}r, \\ \ddot{y} + \frac{b}{m_2}(\dot{y} - \dot{x}) + \frac{k_s}{m_2}(y - x) &= 0. \end{split}$$

$$\begin{split} s^2X(s) + s\frac{b}{m_1}(X(s) - Y(s)) + \frac{k_s}{m_1}(X(s) - Y(s)) + \frac{k_w}{m_1}X(s) &= \frac{k_w}{m_1}R(s), \\ s^2Y(s) + s\frac{b}{m_2}(Y(s) - X(s)) + \frac{k_s}{m_2}(Y(s) - X(s)) &= 0, \end{split}$$

$$\frac{Y(s)}{R(s)} = \frac{\frac{k_w b}{m_1 m_2} \left(s + \frac{k_s}{b}\right)}{s^4 + \left(\frac{b}{m_1} + \frac{b}{m_2}\right) s^3 + \left(\frac{k_s}{m_1} + \frac{k_s}{m_2} + \frac{k_w}{m_1}\right) s^2 + \left(\frac{k_w b}{m_1 m_2}\right) s + \frac{k_w k_s}{m_1 m_2}}.$$

ELEC 3004: Systems

#### **Economics: Cost of Production**

Materials, parts, labour, etc. (*inputs*) are combined to make a number of products (*outputs*):

- $x_i$ : price per unit of production input j
- $a_{ij}$ : input j required to manufacture one unit of product i
- $y_i$ : production cost per unit of product i
- For y = Ax:
  - o  $i^{th}$  row of A is bill of materials for unit of product i
- Production inputs needed:
  - $q_i$  is quantity of product i to be produced
  - $r_i$  is total quantity of production input j needed
- $\therefore r = A^T q$
- & Total production cost is:

$$r^T x = (A^T q)^T x = q^T A x$$

Source: Boyd, EE263, Slide 2-18

9 March 2017 - 39

ELEC 3004: Systems

#### Estimation (or inversion)



$$y = Ax$$

- $y_i$  is  $i^{th}$  measurement or sensor reading (which we have)
- $x_j$  is  $j^{th}$  parameter to be estimated or determined
- $a_{ij}$  is sensitivity of  $i^{th}$  sensor to  $j^{th}$  parameter
- sample problems:
  - o find x, given y
  - $\circ$  find all x's that result in y (i.e., all x's consistent with measurements)
  - o if there is no x such that y = Ax, find x s.t.  $y \approx Ax$  (i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Source: Boyd, EE263, Slide 2-26



#### Mechanics: Total force/torque on rigid body



- $\bullet$   $x_j$  is external force/torque applied at some point/direction/axis
- $y \in \mathbf{R}^6$  is resulting total force & torque on body  $(y_1, y_2, y_3 \text{ are } \mathbf{x}$ -,  $\mathbf{y}$ -,  $\mathbf{z}$  components of total force,  $y_4, y_5, y_6$  are  $\mathbf{x}$ -,  $\mathbf{y}$ -,  $\mathbf{z}$  components of total torque)
- ullet we have y=Ax
- A depends on geometry (of applied forces and torques with respect to center of gravity CG)
- ullet jth column gives resulting force & torque for unit force/torque j

Source: Boyd, EE263, Slide 2-9

9 March 2017 - **41** 



# Another 2<sup>nd</sup> Order System: Accelerometer or Mass Spring Damper (MSD)







- General accelerometer:
  - Linear spring (k) (0<sup>th</sup> order w/r/t o)
  - Viscous damper (b) (1st order)
  - Proof mass (m) (2<sup>nd</sup> order)
- → Electrical system analogy:
  - resistor (R) : damper (b)
  - inductance (L): spring (k)
  - capacitance (C): mass (m)

















#### Next Time...



- We will talk about sampling
- Please complete the "practice assignment" **before** starting Problem Set 1
- Thank you!

