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Linear Differential Systems
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Linearity: Linear Equations
» Consider system of linear equations:

yoo= anry +  apry +ee- @ty
Y2 = azry  +  agery  Fee- o agpty
Ym = Qmi1T1 + @m2r2 + o+ GpnTa

 This can be written in a matrix form as y = Ax, where

n iy a2 e Aln Iy

Y2 ) az1 G2 . dap T2
y=1 " A= ) _ . =

Ym ml Qm2 ' Qmp Ln

Source: Boyd, EE263, Slide 2-2




Linearity: Linear Functions

« A function f R™ - R™ is linear if:
o flx+y)=f(r)+ fly), Yo,y € R"
o flaxr)=af(xr), Vr € R" Va € R

+ That is, Superposition holds: ,
ety

y

Linearity: Linear functions and Matrix Multiplication

Considera f: R™" - R™
given by f(x) = Ax, where A € R™*"

As matrix multiplication function if f is linear, we may now say:
 converse is true: any linear function f: R™ — R™ can be
written as f(x) = Ax, fordome A € R™*"

* Representation via matrix multiplication is unigue:
for any linear function f there is only one matrix

A for which f(x) = Ax forall x

e y = Ax isaconcrete representation of a generic linear function




Linearity: Interpretations

= of y ="4x:
ey is measurement or observation; x is unknown to be determined
e x is an “input” or “stated action”; y is “output” or “result”
— In controls this “x” is sometimes “separated” into x and u
such that x is the state and the wu is the action done by the controller

» A function/transformation that maps x € R™ intoy € R™

= of A(ora;j):
a is a gain factor from j** input (x;) to i*" output (y;)
o it" row of A concerns i*" output (“row-out 1o sea”)
o jt" column of A concerns jt" input  (“corin o tana”)
e az, = 0 means 3 output (y3) doesn’t depend on 41" input (x,)
o lazs| > |as;| for j # 4 means y3 depends mainly on x,
o |aszs| > |aj| fori # 3 means x, affects mainly y
+ If Ais diagonal, then it" output depends only on it" input
« If Alis lower triangular fie. a; = ofori < j1, then the y; only depends on xy, ..., x;

=> Nothing tells you something:
* The sparsity pattern of A [i.e, zeromonzero entries], shows which x; affect which y;
+ Matlab: spy(A) [orjusttry spy]

Linear Dynamic [Differential] System

= LTI systems for which the input & output are linear ODEs

dy d™y dx d™z

yda =L day—2 = byz by e - by —

fzoy+r11dt+ +mdt“ 0L+)1{it+ + v
Laplace:

agY (s8) + a18Y(s) + -+ ans"Y (s) = bgX(s) + b1sX(8) + -+ 4+ bns™X(s)
A(8)Y (s) = B(s)X(s)

« Total response = Zero-input response + Zero-state response

Initial conditions External Input




Linear Systems and ODFE’s

Linear system described by differential equation

dy =b0x+b1%+---+bm d”x
dt" dt dt™

a y+a1ﬂ+---+a
0 dt n

Which using Laplace Transforms can be written as

a,Y (s)+asY(s)+---+a,5"Y (s) =b, X (s) +b,sX(s) +---+b,s"X(S)
A(S)Y (s) =B(s)X(s)

where A(s) and B(s) are polynomials in s

Unit Impulse Response

LTI
30| FG®) [ h@=F@w)

« d(t): Impulsive excitation
* h(t): characteristic mode terms




First Order Systems

First order systems

ay' +by =0 (with a #0)

righthand side is zero:
e called autonomous system

e solution is called natural or unforced response
can be expressed as
Ty +y=0 o y +ry=0

where
e T'=ua/bis a time (units: seconds)

e v =Dhb/a=1/Tis a rate (units: 1/sec)

First Order Systems

Solution by Laplace transform

take Laplace transform of 7'y’ + y = 0 to get

T(sY(s)—y(0))+Y(s) =0
e —

L(y")

solve for Y'(s) (algebra!)

Vig)e Ty(0) y(0)

sT+1 T s 4 l/T

and so y(t) = y(0)e= /T




First Order Systems

solution of Ty +y = 0: y(t) = y(0)e /T

if T' > 0, y decays exponentially

e T gives time to decay by e~ ~ 0.37
e 0.693T gives time to decay by half (0.693 = log 2)
e 4.67" gives time to decay by 0.01 (4.6 = log 100)

if T'< 0, y grows exponentially

e |T| gives time to grow by e ~ 2.72;
e 0.693|T| gives time to double

e 4.6|T| gives time to grow by 100

First Order Systems

Examples
simple RC circuit:

circuit equation: RCv'4+v =0

solution: v(t) = v(0)e~t/ (H)

population dynamics:

e y(t) is population of some bacteria at time ¢

e growth (or decay if negative) rate is y' = by — dy where b is birth rate,
d is death rate

o y(t) = y(0)el=Dt (grows if b > d; decays if b < d)




Second Order Systems

Second order systems

ay’ + by +ey=0

assume a > 0 (otherwise multiply equation by —1)

solution by Laplace transform:

a(s2Y (s) — sy(0) — y'(0)) + b(sY (5) — y(0)) + ¥ (s) =0
L(y") L(y")

solve for Y (just algebra!)

. asy(0) 4+ ay'(0) + by(0) as—+ 3
Y(s) = 3 = —3
as? 4+ bs + ¢ as?+bs+ ¢
where o« = ay(0) and 3 = ay’(0) + by(0)

Second Order Systems

so solution of ay” + by’ +cy =0 is

'8 + 13
R as+
ult) ((L52 +bs+ec

e \(s) = as® + bs + c is called characteristic polynomial of the system
o form of y = L7YY) depends on roots of characteristic polynomial

e coefficients of numerator aes + (3 come from initial conditions




Second Order Response

Unit-Step Response

R(s) X C(s)
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R(s)
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Second Order Response
Envelope Curves
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Second Order Response
Unit Step Response Terms

or
Allowable tolerance
1 ‘\
1 Mw ; R B '+f"""0'?rs
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T I t
e f, —=
skl |

ot
+ Delay time, tg: The time required for the response to reach half the final value
» Rise time, t.: The time required for the response to rise from 10% to 90%
* Peak time, t,:The time required for the response to reach the first peak of the overshoot
»  Maximum (percent) overshoot, Mp:
. C(f.ﬂ) — ¢(o0) .
Maximum percent overshoot = —— ———= x 100%
¢(c0)

+  Settling time, t;: The time to be within 2-5% of the final value

Second Order Response
Seeing this on the S-plane
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Fig. 6.40 Contours of second-order system pole location for constant PO, constant ¢.,
and constant ¢ in s plane.
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Second Order Response
The Case of Adding a Zero

r w? z T y

524 2Lw,s + w3

Z [(r=2 | [
Increasing R g )
s w11\ L 05
LI ! i -
g 12 j T T
B LN NS ] o]l ]
LN N==r
04 l
0.2 / 1 ‘ Adapted from Qui
’ [l l ‘ IFC 2010 — pp. 154-5
% 1 273 4 5 & 7 8 9 10

Normalized time, w,t

« The addition of a zero (a s term) gives a system with a shorter
rise time, a shorter peak time, and a larger overshoot

Second Order Response
The Case of Adding a Zero

r w3 z oAk 9ol

§%+ 2 w,s + w3 w, S+1

12 X
i A I
0.8

:

i Increasing T |
| | M |
0 1 2 3 4 5 6 7 8 9 10

Normalized time, w,

« The addition of a pole (a 1/s term) slows down the system
Adapted from Qui,

response and reduces the overshoot. IFC 2010 pp. 154-5

Amplitude
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Example of 2" Order: RLC Circuits

« KCL:

+ KVL:

« Combining:

vs(t) (\

Vs (1) = Ve ()

L T‘“’
n

Ry

C ‘ ® +i()

Ve(t) = Ly (8) + Rai (1)

2

Vi (8) = RyLO 1 (0L + Raa0) 0 ()4 (g + Ro) i (1)

ELEC 3004: Systems

9 March 2017 - 27
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Multi-Domain-sional Nature

ELEC 3004: Systems

of Multidimensional
Signals & Systems

9 March 2017 - 28

Equivalence Across Domains

Table 2.1 Summary of Through- and Across-Variables for Physical Systems

System
Electrical
Mechanical
translational
Mechanical

rotational

Fluid

Thermal

Variable
Through
Element

Current,
Force, F

Torque, 7

Fluid

momentum, P
Angular
momentum, /2

Volume, V

volumetric rate

of flow, O
Heat flow
rate, g

Heat energy
H

Integrated Variable
Through- Across
Variable Element
Charge, g Vo (<

) difference, v
[ranslational Velocity

difference, vy

Angular velocity

difference, w

Pressure

difference, P,

[emperature

difference, 75,

Source: Dorf & Bishop, Modern Control Systems, 12" Ed., p. 73

Integrated
Across-
Variable

Flux linkage, Ay,

Displacement
difference, y
Angular
displacement
difference, 6,
Pressure

momentum, y,

14



LGl

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

Type of Physical Governing Energy E or
Element Element Equation Power Symbol
3 di Y. L
Electrical inductance vy = [_? E=Li v oY Y io v,
a 2
- " 1 dF 1P e
Translational spring Lo E= m W o 0 . T
Inductive storage 5
Rotational sprin 1t E=1T A2
o Wy = E wy oY oy
otational spring on = z % r
iQ
Fluid inertia Py =192 e
h dr 2 Py Py
Electrical tan =l E=1¢ i 1€
Electrical capacitanc i= E = =Cvy, g v
ectrical capacitance = 3Cvn b_,_”_o
dv, o
Translational mass F=M22 > Pimres 5=
dt - a constant
dw, 1 % o }—0
Capacitive storage {4  Rotational mass T im 2 E=>Jo} eI,
dt constant
; dP,
Fluid capacitance o=¢— = '
«
d7, ;.
Thermal capacitance a=C E
constant
Electrical resistance P = 30 'v’f,\f;m‘
Translational damper P = buy? %
Energy dissipators Rotational damper T = bwy P = bwy®
! w, ]/, o
Fluid resistance P = R o
Py o AANAN——0 P
1=
Thermal resistance P =—Fy R,

Source:

Dorf & Bishop, Modern Control Systems, 12t Ed., p. 74

DO NOT
WRITE
IN THIS
MARGIN
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Example: 2" Order Active RC Filter (Sallen—Key)

« 2" Order System Sallen—Key Low-Pass Topology:

- I—
Vi A o Vou
Build this for
CZI Real in
ELEC 4403
o . Vin—Ve __ = Vgp—V
KCL 4”}%1 L = C]_S ('Ux' — 'Uout) + = RQOLI_TI

« Combined with Op-Amp Law:

Vin— CosRo+1 . vout(CosRo41)—1
in Out( 2 2+ ) = Cysvout (CQSRQ-f—l)*UOUt—FqOUt( 28 1?2,2+ )—vout

R
« Solving for Gives a 2" order System:

Vout — 1

Vin — C1CoR1Ros?+Co(R1+Rp)s+1

Motors

E DC motor, field-controlled, rotational actuator

6(s) _ K
Vi(s)  s(Js + b)(Ls + Ry)

7. AC motor, two-phase control field, rotational actuator

m
P w(s)  s(rs + 1)
g ; = @ = J/(b —
2] T=1/(b—m)
Reference m = slope of linearized torque-speed
field curve (normally negative)

16



Mechanical Systems

15. Accelerometer, acceleration sensor xo(1) = y(t) = xip(t),
Frame Xo(s) s —s?
'3 . I"m"l Xin(s)  s*+ (b/M)s + k/M
M;lss ‘ For low-frequency oscillations, where
J_ - -I_\'(l) ‘;: ‘w"' 5
"ol » Cll o(Jf'J) W
Xin(jo)  k/M

ELEC 3004: Systems 9 March 2017 - 35

Thermal Systems

a(s) 1
16. Thermal heating system a(s)  Cis + (0S + 1/R‘).where

J = J, — J. = temperature difference
due to thermal process

= thermal capacitance

fluid flow rate = constant

specific heat of water

G
0
N
Rl

thermal resistance of insulation

Heater

q(s) = transform of rate of heat flow of
heating element

ELEC 3004: Systems 9 March 2017 - 36



Example: Quarter-Car Model

&,

Road surface
Inertial reference

2 1
3

ky(y — -\')I ]17(.\" = %)
x y
1 ky(x — 1) ky(y — .\‘)1 lh()" —%)

o

Example: Quarter-Car Model (2)

ky w
—x=—r,

wo B o ks
X+ —@E =)+ —x—-y)+—
my my my my

_—k o ks
Y+ —0G -3+ —(-x)=0.
my my

5 b ks Ky w
S°X () +5s—(X(s) = Y(5)) + —(X(5) — Y(5)) + — X (s) = —R(s),
my my my my

5 b ky
s7Y(s) +s— (Y (s) — X(5)) + —(Y(s) = X(5)) =0,
my my

kb i ks
S
mymy b

R(s) b ks K ke kb Kuks
© s4+(—+—’>s3+(—+—'+—)s2+( )s+ ‘
mp mymy mymy

nmj my

I

18



Economics: Cost of Production

Materials, parts, labour, etc. (inputs) are combined to make a
number of products (outputs):
e x;: price per unit of production input j
* a;;: input j required to manufacture one unit of product
e y;: production cost per unit of product i
« Fory = Ax:

o it" row of A is bill of materials for unit of product i
« Production inputs needed:

- g; i1s quantity of product i to be produced

— 17 is total quantity of production input j needed

r = Alqg
& Total production cost is:

rTx = (ATq)Tx = qTAx

Source: Boyd, EE263, Slide 2-18

Estimation (or inversion)

| i

W e

y = Ax
o y; is i" measurement or sensor reading (which we have)
o Xxjis jt" parameter to be estimated or determined
* a; is sensitivity of i** sensor to j** parameter
« sample problems:
o find x, given y
o find all x’s that result in y (i.e., all x’s consistent with measurements)

o ifthereisno xsuchthaty = Ax,findxst y = Ax
(i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Source: Boyd, EE263, Slide 2-26

o

19



Mechanics: Total force/torque on rigid body
T

e x; is external force/torque applied at some point/direction/axis

e y € R is resulting total force & torque on body
(y1. y2, ys are X-, y-, z- components of total force,
Y4, Y5, Ye are X-, y-, Z- components of total torque)

e we have y = Ax

A depends on geometry
(of applied forces and torques with respect to center of gravity CG)

Jjth column gives resulting force & torque for unit force/torque j

Source: Boyd, EE263, Slide 2-9

Another 2™ Order System:

» General accelerometer:
— Linear spring (k) (0t order w/r/t 0)
— Viscous damper (b) (1%t order)
— Proof mass (m) (2" order)

=>» Electrical system analogy:
— resistor (R) : damper (b)
— inductance (L) : spring (k)
— capacitance (C) : mass (m)

20



Measuring Acceleration:
Sense a by measuring spring motion Z

 Start with Newton’s 2" Law:

« Solve ODE:

X (t) = Xpet  Z(t) = Zge?

Measuring Acceleration [2]
» Substitute candidate solutions:

d2( X ne'wt d2( Z~etwt 7~ etwl
(d,z?; ) —m (d(the )_|_k(ZOezwt)_|_b ( 06 )
—mw?Xget = —mw?Zpewt 4k Zgew 4 (iw) bZoeWt

 Define Natural Frequency (®,)
& Simplify for Z,

(the spring displacement “magnitude”):

o=k

m

21



Acceleration: 2" Order System

» Plot for a “unit” mass, etc....

Z/%,
. 0
1 T
1
Fond
T, ?/Lo"—
20 : ‘__‘qu,

l: ) e a0 .0

Accelerometer

* For o<<oy:

2
~ w=Xo a
0 0

=> it’s an
Accelerometer
* For o~m,
— As:b20, Z>
— Sensitivity 1
¢ For o>>wy:
ZO ~ XO

2it’sa

Ex3: “Loop Gain” to Quantify Ventilatory Stability:

Disturbance

Ventilation

Response

* Loop Gain =

disturbandg

ventilation
V

Chemo-
reflex

chemical
drive

Response
Disturbance

Pco,

overall loop gain, LG

* Loop Gain>1 implies an unstable control system

* Loop Gain<] implies a stable control system

» Like EEG, disturbance can be characterised by frequency

22



Estimating LG from Clinical PSG:

Abdo RIP '

L AAAANAAN

05—

2950 3000 3050 3100 3150 3200 3250 3300
LGn=0.64 LG60=0.9 LG30=0.46

LGl

Ex: Deblurring

Moving
Camera
Optics

perfect image blurry image

« Matlab: deconvwnr

23



Next Time...

« We will talk about sampling

* Please complete the “practice assignment” before
starting Problem Set 1

» Thank you!

24



