

Signals as Vectors Systems as Maps

ELEC 3004: Systems: Signals \& Controls
Dr. Surya Singh
Lecture 3
elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/

Tomorrow: UN International Women's Day 2017

- Ada Lovelace: English mathematician and writer
- Creator of the first algorithm and first computer program

Lecture Schedule:

Week	Date	Lecture Title
1	28-FebI	Introduction
	2-MarS	Systems Overview
2	7-Mar	Systems as Maps \& Signals as Vectors
	9-Mar	Data Acquisition \& Sampling
3	14-Mar	Sampling Theory
	16-Mar	Antialiasing Filters
4	21-MarD	Discrete System Analysis
	23-Mar	Convolution Review
5	28-MarF	Frequency Response
	30-MarF	Filter Analysis
5	4-AprD	Digital Filters (IIR)
	6-AprD	Digital Windows
6	11-AprD	Digital Filter (FIR)
	13-AprF	FFT
	18-Apr	Holiday
	$20-\mathrm{Apr}$	
	$25-\mathrm{Apr}$	
7	27-AprA	Active Filters \& Estimation
8	2-MayI	Introduction to Feedback Control
	4-May	Servoregulation/PID
10	9-MayI	Introduction to (Digital) Control
	11-May	Digitial Control
11	16-May D	Digital Control Design
	18-May	Stability
12	23-May D	Digital Control Systems: Shaping the Dynamic Response
	25-May	Applications in Industry
13	30-MayS	System Identification \& Information Theory
	1-JunS	Summary and Course Review

- Chapter 1:

Introduction to Signals and Systems

- § 1.7 Classification of Systems
- Chapter 3:

Signal Representation By Fourier Series

- § 3.1 Signals and Vectors
- § 3.3 Signal Representation by Orthogonal Signal Set

System Terminology

System Classifications/Attributes

1. Linear and nonlinear systems
2. Constant-parameter and time-varying-parameter systems
3. Instantaneous (memoryless) and dynamic (with memory) systems
4. Causal and noncausal systems
5. Continuous-time and discrete-time systems
6. Analog and digital systems
7. Invertible and noninvertible systems
8. Stable and unstable systems
(1) ELEC 3004: Systems

Dynamical Systems...

- A system with a memory
- Where past history (or derivative states) are relevant in determining the response
- Ex:
- RC circuit: Dynamical
- Clearly a function of the "capacitor's past" (initial state) and
- Time! (charge / discharge)
- R circuit: is memoryless \because the output of the system (recall $\mathrm{V}=\mathrm{IR}$) at some time \mathbf{t} only depends on the input at time \mathbf{t}
- Lumped/Distributed
- Lumped: Parameter is constant through the process \& can be treated as a "point" in space
- Distributed: System dimensions \neq small over signal
- Ex: waveguides, antennas, microwave tubes, etc.

Causality:

Causal (physical or nonanticipative) systems

- Is one for which the output at any instant t_{0} depends only on the value of the input $\mathbf{x}(\mathbf{t})$ for $\mathbf{t} \leq \mathbf{t}_{\mathbf{0}}$. Ex:

```
u(t)=x(t-2) => causal
u(t)=x(t-2)+x(t+2)=> noncausal
```

- A "real-time" system must be causals
- How can it respond to future inputs?
- A prophetic system: knows future inputs and acts on it (now)
- The output would begin before t_{0}
- In some cases Noncausal maybe modelled as causal with delay
- Noncausal systems provide an upper bound on the performance of causal systems

Causality:

Looking at this from the output's perspective...

- Causal $=$ The output before some time t does not depend on the input after time t.
Given: $y(t)=F(u(t))$
For:

$$
\widehat{u}(t)=u(t), \forall 0 \leq t<T \text { or }[0, T)
$$

Then for a $\mathrm{T}>0$:
$\rightarrow \widehat{y}(t)=y(t), \forall 0 \leq t<T$

Causal

Noncausal
24) ELEC 3004: Systems

Systems with Memory

- A system is said thave memory if the output at an arbitrary time $t=t_{*}$ depends on input values other than, or in addition to, $x\left(t_{*}\right)$
- Ex: Ohm's Law

$$
V\left(t_{o}\right)=R i\left(t_{o}\right)
$$

- Not Ex: Capacitor

$$
V\left(t_{0}\right)=\frac{1}{C} \int_{-\infty}^{t} i(t) d t
$$

Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If $x(t)$ produces output $y(t)$
- Then $x\left(t-t_{0}\right)$ produces output $y\left(t-t_{0}\right)$
- Ex: Capacitor
- $V\left(t_{0}\right)=\frac{1}{c} \int_{-\infty}^{t} i\left(\tau-t_{0}\right) d \tau$

$$
=\frac{1}{C} \int_{-\infty}^{t-t_{0}} i(\tau) d \tau
$$

$$
=V\left(t-t_{0}\right)
$$

Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If $x(t)$ produces output $y(t)$
- Then $x\left(t-t_{0}\right)$ produces output $y\left(t-t_{0}\right)$

Unit Step Function

- $u(t)=\left\{\begin{array}{l}0, t<0 \\ 1, t>0\end{array}\right.$

"Rectangular Pulse"
- $p(t)=u(t)-u(t-T)$

Unit-Impulse Function

1. $\delta(t)=0$ for $t \neq 0$.
2. $\delta(t)$ undefined for $t=0$.
3. $\int_{t_{t}}^{t_{2}} \delta(t) d t= \begin{cases}1_{2} & \text { if } t_{1}<0<t_{2} \\ \overline{0}, & \text { otherwise } .\end{cases}$

EXAMPLE: First Order RC Filter

- Passive, First-Order Resistor-Capacitor Design:

- 3dB ($1 / 2$ Signal Power):

$$
\begin{aligned}
& \omega=2 \pi f \\
& f_{c}=\frac{1}{2 \pi \mathrm{RC}}
\end{aligned}
$$

- Magnitude:

$$
T(s)=\frac{a_{1} s+a_{0}}{s+\omega_{0}}
$$

$$
\left|V_{\text {out }}\right|=\sqrt{\frac{1}{(\omega R C)^{2}}}\left|V_{\text {in }}\right|
$$

- Phase:

$$
\phi=\tan ^{-1}(-\omega R C)
$$

Example I: RC Circuits

$$
\begin{aligned}
\substack{A C \\
f(t)=(t)}
\end{aligned}
$$

BREAK

Signals as Vectors

Complex Exponential Signals

$$
x(t)=A e^{\lambda t}
$$

- A and λ are generally complex numbers.
- If A and λ are, in fact, real-valued numbers, $x(t)$ is itself real-valued and is called a real exponential

(a)

(b)

Signals as Vectors

- Back to the beginning!

Signals as Vectors

- There is a perfect analogy between signals and vectors ...

Signals are vectors!

- A vector can be represented as a sum of its components in a variety of ways, depending upon the choice of coordinate system. A signal can also be represented as a sum of its components in a variety of ways.

Signals as Vectors

- Represent them as Column Vectors

$$
x=\left[\begin{array}{c}
x[1] \\
x[2] \\
x[3] \\
\vdots \\
x[N]
\end{array}\right] .
$$

Signals as Vectors

- Can represent phenomena of interest in terms of signals
- Natural vector space structure (addition/substraction/norms)
- Can use norms to describe and quantify properties of signals

[^0]
Signals as vectors

Signals can take real or complex values.
In both cases, a natural vector space structure:

- Can add two signals: $x_{1}[n]+x_{2}[n]$
- Can multiply a signal by a scalar number: $C \cdot x[n]$
- Form linear combinations: $C_{1} \cdot x_{1}[n]+C_{2} \cdot x_{2}[n]$

Various Types

- Audio signal (sound pressure on microphone)
- B/W video signal (light intensity on
- photosensor)
- Voltage/current in a circuit (measure with
- multimeter)
- Car speed (from tachometer)
- Robot arm position (from rotary encoder)
- Daily prices of books / air tickets / stocks
- Hourly glucose level in blood (from glucose monitor)
- Heart rate (from heart rate sensor)

Vector Refresher

- Length:

$$
|x|^{2}=x \cdot x
$$

- Decomposition: $\mathbf{x}=c_{1} \mathbf{y}+\mathbf{e}_{1}=c_{2} \mathbf{y}+\mathbf{e}_{2}$
- Dot Product of \perp is $0: \quad \mathbf{x} \cdot \mathbf{y}=0$

Vectors [2]

- Magnitude and Direction

$$
f \cdot x=|f||x| \cos (\theta)
$$

- Component (projection) of a vector along another vector

$$
\mathbf{f}=c \mathbf{x}+\mathbf{e} \quad \leftarrow \text { Error Vector }
$$

평 ELEC 3004: Systems

Vectors [3]

- ∞ bases given $\overrightarrow{\mathbf{x}}$

(a)

- Which is the best one?

$$
\begin{gathered}
\mathbf{f} \simeq c \mathbf{x} \\
c|\mathbf{x}|=|\mathbf{f}| \cos \theta \\
c|\mathbf{x}|^{2}=|\mathbf{f}||\mathbf{x}| \cos \theta=\mathbf{f} \cdot \mathbf{x} \\
c=\frac{\mathbf{f} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}=\frac{1}{|\mathbf{x}|^{2}} \mathbf{f} \cdot \mathbf{x} \\
\mathbf{f} \cdot \mathbf{x}=0
\end{gathered}
$$

- Can I allow more basis vectors than I have dimensions?

Signals Are Vectors

- A Vector / Signal can represent a sum of its components

Remember (Lecture 5, Slide 10):
Total response $=$ Zero-input response + Zero-state response

- Vectors are Linear
- They have additivity and homogeneity

Vectors / Signals Can Be Multidimensional

- A signal is a quantity that varies as a function of an index set
- They can be multidimensional:
- 1-dim, discrete index (time): x[n]
- 1-dim, continuous index (time): $x(t)$
- 2-dim, discrete (e.g., a B/W or RGB image): $x[j ; k]$
- 3-dim, video signal (e.g, video): x[j; k; n]

It's Just a Linear Map

- $\mathrm{y}[\mathrm{n}]=2 \mathrm{u}[\mathrm{n}-1]$ is a linear map
- BUT y[n]=2(u[n]-1) is NOT Why?
- Because of homogeneity!

$$
\mathrm{T}(\mathrm{au})=\mathrm{aT}(\mathrm{u})
$$

Norms of signals

Can introduce a notion of signals being "nearby."
This is characterized by a metric (or distance function).

$$
d(\mathrm{x}, \mathrm{y})
$$

If compatible with the vector space structure, we have a norm.

$$
\|x-y\|
$$

Examples of Norms

Can use many different norms, depending on what we want to do.
The following are particularly important:

- ℓ_{2} (Euclidean) norm:

$$
\|x\|_{2}=\left(\sum_{k=1}^{n}|x[k]|^{2}\right)^{\frac{1}{2}} \quad \operatorname{norm}(\mathrm{x}, 2)
$$

- ℓ_{1} norm:

$$
\|x\|_{1}=\sum_{k=1}^{n}|x[k]| \quad \operatorname{norm}(\mathrm{x}, 1)
$$

- ℓ_{∞} norm:

$$
\|x\|_{\infty}=\max _{k}|x[k]| \quad \operatorname{norm}(\mathrm{x}, \mathrm{inf})
$$

What are the differences?

Properties of norms

For any norm $\|\cdot\|$, and any signal x , we have:
(1) Linearity: if C is a scalar,

$$
\|C \cdot \mathrm{x}\|=|C| \cdot\|\mathrm{x}\|
$$

(2) Subadditivity (triangle inequality):

$$
\|\mathrm{x}+\mathrm{y}\| \leq\|\mathrm{x}\|+\|\mathrm{y}\|
$$

Can use norms:

- To detect whether a signal is (approximately) zero.
- To compare two signals, and determine if they are "close."

$$
\|x-y\| \approx 0
$$

Signal representation by Orthogonal Signal Set

- Orthogonal Vector Space

\rightarrow A signal may be thought of as having components.

Component of a Signal

$$
\begin{aligned}
& f(t) \simeq c x(t) \quad t_{1} \leq t \leq t_{2} \\
& c=\frac{\int_{t_{1}}^{t_{2}} f(t) x(t) d t}{\int_{t_{1}}^{t_{2}} x^{2}(t) d t}=\frac{1}{E_{x}} \int_{t_{1}}^{t_{2}} f(t) x(t) d t
\end{aligned}
$$

- Let's take an example:
$\int_{t_{1}}^{t_{2}} f(t) x(t) d t=0$

$$
f(t) \simeq c \sin t \quad 0 \leq t \leq 2 \pi
$$

$$
x(t)=\sin t \quad \text { and } \quad E_{x}=\int_{0}^{2 \pi} \sin ^{2}(t) d t=\pi
$$

Fig. 3.3 Approximation of square signal in terms of a single sinusoid.
Thus
$f(t) \simeq \frac{4}{\pi} \sin t$

Basis Spaces of a Signal

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} x_{m}(t) x_{n}(t) d t= \begin{cases}0 & m \neq n \\
E_{n} & m=n\end{cases} \\
f(t) \simeq c_{1} x_{1}(t)+c_{2} x_{2}(t)+\cdots+c_{N} x_{N}(t) \\
=\sum_{n=1}^{N} c_{n} x_{n}(t) \\
c_{n}=\frac{\int_{t_{1}}^{t_{2}} f(t) x_{n}(t) d t}{\int_{t_{1}}^{t_{2}} x_{n}^{2}(t) d t} \\
=\frac{1}{E_{n}} \int_{t_{1}}^{t_{2}} f(t) x_{n}(t) d t \\
f(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)+\cdots+c_{n} x_{n}(t) \\
=1, \cdots \\
=\sum_{n=1}^{\infty} c_{n} x_{n}(t)
\end{gathered}
$$

ELEC 3004: Systems
7 March $2016 \quad 37$

Basis Spaces of a Signal

$$
\begin{aligned}
f(t) & =c_{1} x_{1}(t)+c_{2} x_{2}(t)+\cdots+c_{n} x_{n}(t)+\cdots \\
& =\sum_{n=1}^{\infty} c_{n} x_{n}(t) \quad t_{1} \leq t \leq t_{2}
\end{aligned}
$$

- Observe that the error energy Ee generally decreases as N, the number of terms, is increased because the term $C k 2 E k$ is nonnegative. Hence, it is possible that the error energy -> 0 as N-> 00 . When this happens, the orthogonal signal set is said to be complete.
- In this case, it's no more an approximation but an equality

Linear combinations of signals

Application Example: Active Noise Cancellation

A "noise" signal, that we want to get rid of.

- At subject location, signal is

$$
x[n]
$$

- Microphone picks up signal

$$
x_{c}[n]
$$

- Subtract the two signals:

$$
y(t)=x(t)-x_{c}(t)
$$

- Microphone pick up

Notice careful synchronization is needed!

Systems as Maps

Then a System is a MATRIX

$$
\begin{gathered}
\xrightarrow{u[n]} \begin{array}{c}
D \\
y=D u . \\
{\left[\begin{array}{c}
\\
y[1] \\
y[2] \\
\vdots \\
y[M]
\end{array}\right]=\left[\begin{array}{cccc}
D_{11} & D 12 & \cdots & D_{1 N} \\
D_{21} & D_{22} & \cdots & D_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
D_{M 1} & D_{M 2} & \cdots & D_{M N}
\end{array}\right]\left[\begin{array}{c}
u[1] \\
u[2] \\
\vdots \\
u[N]
\end{array}\right]} \\
y[i]=\sum_{j} D_{i j} u[j] .
\end{array}
\end{gathered}
$$

Linear Time Invariant

- Linear \& Time-invariant (of course - tautology!)
- Impulse response: $\mathbf{h}(\mathrm{t})=\mathbf{F}(\boldsymbol{\delta}(\mathrm{t}))$
- Why?
- Since it is linear the output response (\mathbf{y}) to any input (\mathbf{x}) is:

$$
\begin{aligned}
& x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau \\
& y(t)=F\left[\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau\right] \xrightarrow{\text { linear }} \int_{-\infty}^{\infty} x(\tau) F[\delta(t-\tau)] d \tau \\
& h(t-\tau) \stackrel{T I}{=} F[\delta(t-\tau)] \\
& \Rightarrow y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=x(t) * h(t)
\end{aligned}
$$

- The output of any continuous-time LTI system is the convolution of input $\mathbf{u}(\mathrm{t})$ with the impulse response $\mathbf{F}(\boldsymbol{\delta}(\mathrm{t}))$ of the system.

Linear Dynamic [Differential] System

\equiv LTI systems for which the input \& output are linear ODEs

$$
a_{0} y+a_{1} \frac{d y}{d t}+\cdots+a_{n} \frac{d^{n} y}{d t^{n}}=b_{0} x+b_{1} \frac{d x}{d t}+\cdots+b_{m} \frac{d^{m} x}{d t^{m}}
$$

Laplace:

$$
\begin{aligned}
& a_{0} Y(s)+a_{1} s Y(s)+\cdots+a_{n} s^{n} Y(s)=b_{0} X(s)+b_{1} s X(s)+\cdots+b_{m} s^{m} X(s) \\
& A(s) Y(s)=B(s) X(s)
\end{aligned}
$$

- Total response $=$ Zero-input response + Zero-state response

Linear Systems and ODE's

- Linear system described by differential equation

$$
a_{0} y+a_{1} \frac{d y}{d t}+\cdots+a_{n} \frac{d^{n} y}{d t^{n}}=b_{0} x+b_{1} \frac{d x}{d t}+\cdots+b_{m} \frac{d^{m} x}{d t^{m}}
$$

- Which using Laplace Transforms can be written as
$a_{0} Y(s)+a_{1} s Y(s)+\cdots+a_{n} s^{n} Y(s)=b_{0} X(s)+b_{1} s X(s)+\cdots+b_{m} s^{m} X(s)$
$A(s) Y(s)=B(s) X(s)$
where $A(s)$ and $B(s)$ are polynomials in s

Unit Impulse Response

Ex:

- $\boldsymbol{\delta}(\mathrm{t})$: Impulsive excitation
- $\mathrm{h}(\mathrm{t})$: characteristic mode terms

Determine the unit impulise response $h(t)$ for a system specified by the equation
$\left(D^{2}+3 D+2\right) y(t)=D x(t)$
(2.25)

This is a second-order system ($(N=2)$ having the characteristic polynomial
$\left(\lambda^{2}+3 \lambda+2\right)=(\lambda+1)(\lambda+2)$
The characteristic roots of this system are $\lambda=-1$ and $\lambda=-2$. Therefore
$y_{n}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$
Differentiation of this equation yields
$\dot{y}_{n}(t)=-c_{1} e^{-t}-2 c_{2} e^{-2}$

Setting $t=0$ in Eqs. (2.26a) and (226b), and substituting the intial conditions just given, we obtain
$0=c_{1}+c_{2}$
$1=-c_{1}-2 c_{2}$
Solution of theso two simultaneous equations yields
$c_{1}=1$
and
$c_{2}=-1$
$c_{1}=1$
Therefore
$y_{n}(t)=e^{-t}-e^{-2}$
Moreover, according to Eq (2.25), $P(D)=0$, so that
(D)V.(I) Dl 2)

Also in this case, $b_{0}=0$ the second-order term is absent in P(DI) Therefore
$h(t)=\left[P(D) y_{n}(t)\right] u(t)=\left(-e^{-1}+2 e^{-2 z}\right) u(t)$

Where are we going with this?

This can help simplity matters...

An Example
Consider the following system:

- How to model and predict (and control the output)?

This can help simplity matters... An Example

Consider the following system:

- How to model and predict (and control the output)?

This can help simplify matters...

 An Example- Consider the following system:

$$
\dot{x}=A x, \quad y=C x
$$

- $x(t) \in \mathbb{R}^{8}, y(t) \in \mathbb{R}^{1} \rightarrow 8$-state, single-output system
- Autonomous: No input yet! $(u(t)=0)$

This can help simplify matters... An Example

- Consider the following system:

This can help simplify matters... An Example

Example: Let's consider the control...

Expand the system to have a control input...

- $B \in \mathbb{R}^{8 \times 2}, C \in \mathbb{R}^{2 \times 8}$ (note: the $2^{\text {nd }}$ dimension of C)

$$
\dot{x}=A x+B u, \quad y=C x, \quad x(0)=0
$$

- Problem: Find \mathbf{u} such that $y_{\text {des }}(t)=(1,-2)$
- A simple (and rational) approach:
- solve the above equation!
- Assume: static conditions (u, x, y constant)

$$
\dot{x}=0=A x+B u_{\text {static }}, \quad y=y_{\text {des }}=C x
$$

\rightarrow Solve for u:

$$
u_{\text {static }}=\left(-C A^{-1} B\right)^{-1} y_{\mathrm{des}}=\left[\begin{array}{r}
-0.63 \\
0.36
\end{array}\right]
$$

Example: Apply $\boldsymbol{u}=u_{\text {static }}$ and presto!

- Note: It takes 1500 seconds for the $\mathrm{y}(\mathrm{t})$ to converge .. but that's natural ... can we do better?

Example: Yes we can!

- How about:

Example: How? How about a more clever input?

- How about:

- Converges in 50 seconds (3.3% of the time -$)$

Example: Can we beat it? Larger inputs \& LDS

- Converges in 20 seconds (1.3% of the time -$)$

EM, ELEC 3004: Systems

Next Time...

- We'll talk about Other System Properties ©

- We will introduce this via the lens of:
"Systems as Maps. Signals as Vectors"
- Review:
- Phasers, complex numbers, polar to rectangular, and general functional forms.
- Chapter B and Chapter 1 of Lathi
(particularly the first sections on signals \& classification thereof)
- Register on Platypus
- Try the practise assignment

[^0]: ELEC 3004: Systems

