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Shaping the
Dynamic Response:

Pole Placement
(FPW Chapter 6)

Pole Placement (Following FPW — Chapter 6)
» FPW has a slightly different notation:

x = Fx + Gu,
y = Hx.

x(k +1) = &x(k) + T'u(k),
y(k) = Hx(k),

_ FT
P=¢"",

.
r:f eF1dnG,
0
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Pole Placement

» Start with a simple feedback control law (“controller”)
I
w=-—-Kx= —-[f\’lf\’g e ] | %2

* It’s actually a regulator
~+ it does not allow for a reference input to the system.
(there is no “reference” r (r = 0))

 Substitute in the difference equation
x(k +1) = dx(k) — TKx(k)
» Z Transform:
(zI —d+TK)X(2) =0
=>» Characteristic Eqgn:
det|z —® +TK| =0

Pole Placement

Pole placement: Big idea:

« Arbitrarily select the desired root locations of the closed-loop
system and see if the approach will work.

» AKA: full state feedback
*» enough parameters to influence all the closed-loop poles

 Finding the elements of K so that the roots are in the desired
locations. Unlike classical design, where we iterated on
parameters in the compensator (hoping) to find acceptable root
locations, the full state feedback, pole-placement approach
guarantees success and allows us to arbitrarily pick any root
locations, providing that n roots are specified for an nt"-order
system.
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Serious design
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Back to Pole Placement

* Given:

Zi = ﬂlr ﬁZr ﬁ3'

» This gives the desired control-characteristic equation as:

ac(z) = (2= B)(z = B)(z—PB3) .. =

* Now we “just solve” for K and “bingo”

L




Pole Placement Example (FPW p. 241)

Example 6.1: Suppose we want to design a control law for the
satellite attitude-control system described by (2.45) with @ = [@; @3]
Example 2.13 showed that the discrete model for this system is

v T _ 7?2
Q—[O 1] and I‘—[ T ]

We want to pick z-plane roots of the closed-loop characteristic equa-
tion so that the equivalent s-plane roots have a damping ratio of
¢ = 0.5 and real part of s = —1.8 rad/sec (i.e., s = —1.8 £ j3.12
rad/sec). Using z = e*T with a sample period of 7' = 0.1 sec, we find
that z = 0.8 + j0.25, as shown in Fig. 6.1. The desired characteristic

equation is then
22 — 1.6z +0.70 = 0, (6.9)

and the evaluation of (6.7) for any control law K leads to

z[l “] [1 "']+[T;/2J[K1 K3

01 0 1

det =0

or

224+ (TKy+ (T?/2)K1 — 2)z + (T?/2)K; = TKy+1=0. (6.10)

Pole Placement Example (FPW p. 241)

Squating coefficients in (6.9) and (6.10) with like powers of z, we
obtain two simultaneous equations in‘the two unknown elements of

K:
TKy+ (T?/2)K, — 2 = —1.,
(T?/2)K) — TKz + 1 =0.70,

which are easily solved for the coefficients and evaluated for 7' = 0.1
sec:

= 3.5.

0.10 0.35
K[:—,Z‘ZIO, I{Z: T




Pole Placement Example (FPW p. 241)

Ima

xis

-1.0

0.6 —04
z = plane loci of roots of constant § and w,,

s =—tw, T ju, /1 =82
z=els

A control roots

A\ estimator roots
T = sampling period

Ackermann's Formula (FPW p. 245)
+ Gains maybe approximated with:

|[K=[p...0 yr or &T.. 2" ' a(2)|

» Where: C = controllability matrix, n is the order of the system
(or number of state elements) and «.:

C=[ @&r...]
ap(®) = " + ;B 1+ P2+ -+ ],

- a;: coefficients of the desired characteristic equation

a‘:(z):IZI_(I)+I‘K|:Zn'*'()flzn-]'-f—w-{—afn




Ackermann's Formula Example (FPW p.246)

Example 6.2: Applying Ackermann’s formula to the satellite at-
titude-control system of Example 6.1, we find from (6.9) that

ap = —1.6, as = +0.70,

and therefore

=3 T]-sfs T]renly 8- (3 257)

Furthermore, we find that

_[T%/2 37%)2
r <1>r17{ o4 J
and
It -1 _ 2 1 +3T/2
L &0 = 1T [ I Cpla]s

and finally

k=t kol =z [T SRS T

1 -T/2 0 0.1
therefore
1
[K; K] = T—q[l'l.l 0.357)
=[10 3.5,

which is the same result as that obtained earlier.

Shaping the
Dynamic Response:

SISO
Friedland Chapter 6)
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SDR: Introduction

&

6.1 INTRODUCTION

At last we have arrived at the point of using state-space methods for control
system design. In this chapter we will develop a simple method of designing a
control system for a process in which all the state variables are accessible for
measurement—the method known as pele-placement. We will find that in a
controllable system, with all the state variables accessible for measurement, it is
possible to place the closed-loop poles anywhere we wish in the complex s
plane. This means that we can, in principle, completely specify the closed-loop
dynamic performance of the system. In principle, we can start with a sluggish
open-loop system and force it to behave with alacrity; in principle, we can start
with a system that has very little open-loop damping and provide any amount
of damping desired. Unfortunately, however, what can be attained in principle
may not be attainable in practice. Speeding the response of a sluggish system
requires the use of large control signals which the actuator (or power supply)
may not be capable of delivering. The consequence is generally that the actuator
saturates at the largest signal that it can supply. In some instances the system
behavior may be acceptable in spite of the saturation. But in other cases the
effect of saturation is to make the closed-loop system unstable. It is usually not
possible to alter open-loop dynamic behavior very drastically without creating
practical difficulties.

Adding a great deal of damping to a system having poles near the imaginary
axis is also problematic, not only because of the magnitude of the control
signals needed, but also because the control system gains are very sensitive to
the location of the open-loop poles. Slight changes in the open-loop pole

222

SDR: Introduction [2]

I

SHAPING THE DYNAMIC RESPONSE 223

location may cause the closed-loop system behavior to be very different from
that for which it is designed.

We will first address the design of a regulator. Here the problem is to
determine the gain matrix G in a linear feedback law

u=-Gx (6.1)

which shapes the dynamic response of the process in the ‘absence of distur-
bances and reference inputs. Afterward we shall consider the more general
problem of determining the matrices G and G in the linear control law

u = —Gx — Gyx, (6.2)

where x, is the vector of exogenous variables. The reason it is necessary to
separate the exogenous variables from the process state x, rather than deal
directly with the metastate
X
- [2] .
Xo

introduced in Chap. 5, is that in developing the theory for the design of the gain
matrix, we must assume that the underlying process is controllable. Since the
exogenous variables are not true state variables, but additional inputs that
cannot be affected by the control action, they cannot be included in the state
vector when using a design method that requires controllability.




SDR: Introduction [3]

O

The assumption that all the state variables are accessible to measurement in
the regulator means that the gain matrix G in (6.1) is permitted to be any
function of the state x that the design method requires. In most practical
instances, however, the state variables are not all accessible for measurement.
The feedback control system design for such a process must be designed to use
only the measurable output of the process

y=Cx

where y is a vector of lower dimension than x. In some cases it may be possible
to determine the gain matrix G, for a control law of the form

u=-Gy (6.4)

which produces acceptable performance. But more often it is not possible to do
so. It is then necessary to use a more general feedback law, of the form

u=-Gx% (6.5)

where X is the state of an appropriate dynamic system known as an ‘“‘observer.”
The design of observers is the subject of Chap. 7. And in Chap. 8, we shall show
that when a feedback law of the form of (6.5) is used with a properly designed
observer, the dynamic properties of the overall system can be specified at will,
subject to practical limitations on control magnitude and accuracy of
implementation.

Design of regulators for
single-input, single-output systems

o

6.2 DESIGN OF REGULATORS FOR
SINGLE-INPUT, SINGLE-OUTPUT SYSTEMS

The present section is concerned with the design of a gain matrix

G = g’ = [ghgl!"'agk] {661'
for the single-input, single-output system
x=Ax+ Bu (6.7}
where
b,
b,
B=b=|. (6.8)
b
With the control law u = —Gx = —g'x (6.7) becomes
x=(A—bg')x

Our objective is to find the matrix G = ¢' which places the poles of the
closed-loop dynamics matrix

A.=A- by (6.9)

10



Design ot regulators tor
single-input, single-output systems

at the locations desired. We note that there are k gains g, go, ..., g and k
poles for a kth order system, so there are precisely as many gains as needed to
specify each of the closed-loop poles.

One way of determining the gains would be to set up the characteristic
polynomial for A.:

IsT -Al=|sI —A+bg|=s"+as""'+ - --+a, (6.10)

The coeflicients a,, @, ..., d, of the powers of s in the characteristic poly-
nomial will be functions of the k unknown gains. Equating these functions to
the numerical values desired for a,...,d; will result in k simultaneous
equations the solution of which will yield the desired gains g, ..., g

This is a perfectly valid method of determining the gain matrix g, but it
enlails a substantial amount of calculation when the order k of the system is
higher than 3 or 4. For this reason, we would like to develop a direct formula
for g in terms of the coefficients of the open-loop and closed-loop characteristic
equations.

If the original system is in the companion form given in (3.90), the task is
particularly easy, because

—a, =—a, =t —d
1 0 0 0

A=]| 0 | 0 0 {(6.11)
0 0 1 0

Design of regulators for
single-input, single-output systems

0 g g2 Ok
bg'=| O|lgngn--cngd=| = ? ______ 0
0 LI 0
Hence
-4 -4, —— 6 ~ a4 = Gk
1 0 0
A.=A-bg - 0 1 0
0 0 0

The gains g,,..., g are simply added to the coefficients of the open-loop A
matrix to give the closed-loop matrix A. This is also evident from the
block-diagram representation of the closed-loop system as shown in Fig. 6.1.
Thus for a system in the companion form of Fig. 6.1, the gain matrix elements
are given by
a;tg =d; i=12...k

or

g=d—a (6.12)

a, a,
a=] : é=|: ] (6.13)
a, a,

where

o

11



Design ot regulators tor
single-input, single-output systems

are vectors formed from the coefficients of the open-loop and closed-loop
characteristic equations, respectively.

The dynamics of a typical system are usually not in companion form. It is
necessary to transform such a system into companion form before (6.12} can be
used. Suppose that the state of the transformed system is X, achieved through
the transformation

=Tx (6.14)
Then, as shown in Chap. 3,
£ = A% + bu (6.15)
where
A=TAT" and b=Tb
For the transformed system the gain matrix is
g=d—-a=da-a (6.16)

since @ = a (the characteristic equation being invariant under a change of state
variables). The desired control law in the original system is

u=-g'x=—gT 's=-gx (6.17)

From (6.17) we see that

v

g=g'T"
Thus the gain in the original system is

g=Tg=T{d—a) (6.18)

Design of regulators for
single-input, single-output systems

o

In words, .the desired gain matrix for a general system is the difference
between the coeficient vectors of the desired and actual characteristic equation,
premultiplied by the inverse of the transpose of the matrix T that transforms the
general system into the companion form of (3.90), the A matrix of which has

the form (6.11).
The desired matrix T is obtained as the product of two matrices U and V:

T=VYU (6.19)
The first of these matrices transforms the original system into an intermediate

system
%= A% (6.20)

in the second companion form (3.107) and the second transformation U
transforms the intermediate system into the first companion form.
Consider the intermediate system

¥ = A%+ bu (6.21)
with A and b in the form of (3.107). Then we must have

A=UAU"' and b=Ub (6.22)

12



Design of regulators for
single-input, single-output systems

The desired matrix U is precisely the inverse of the controllability test
matrix Q of Sec. 5.4. To prove this fact, we must show that

U'A=AU (6.23)
or .
QA=AQ (6.24)

Now, for a single-input system
Q=[bAb,..., A'b]
Thus, with A given by (3.107), the left-hand side of (6.23) is

00 --+ —a
1 0 - —a,
QA=[bAb,..., A<D 0 1T -+ —a,

00 -+ —aq
=[Ab,A’b, ..., A*'b, —ah — ap_|Ab —-- - — @, A 'b] (6.25)
The last term in (6.23) is
(—ad —ay_ A—-—a A" Yb (6.26)
Now, by the Cayley-Hamilton theorem, (see Appendix):
AF = —q A =g ARN - gl

50 (6.26) is A*b. Thus the left-hand side of (6.24) as given by (6.25) is
QA =[Ab, A%, ..., A*b]= A[b, Ab,..., A" 'b] = AQ
which is the desired result.

ELEC 3004: Systems 25May 2017 - 26

Ex: Servo Motor Control

Tachometer Potentiometer

g:

Velocity gain

H \

—e

g — - \}‘

I Position gain ,

Figure 6.2 Implementation of an instrument servo,

ELEC 3004: Systems 25May 2017 - 27
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Ex: Servo Motor Control [2]

Example 6A Instrument serve A dc motor driving an inertial load constitutes a simple
instrument servo for keeping the load at a fixed position.
As shown in Chap. 2 (Example 2B}, the state-space equations for the motor-driven inertia
are 5
d=w (6A.1)

—aw + Bu (6A.2)

@
where @ is the angular position of the load, w is the angular velocity, u is the applied vollage,
and @ and B arc constants that depend on the physical parameters of the motor and load:

a=-KYIR p=K/IR
IT the desired position #, is a constant then we can define the servo error

e=6-9,

Then é=f—6-w (#, = const) (6A.3)

and (6A.3) replaces (6A.1) to give

[:] - [g ;][;] ' [,0:]" (6A4)

The angular position can be i d by a on the motor
shaft and the angular velocity by a tachometer. Thus, the closed-loop system would have the
configuration illustrated in Fig. 6.2. Note that the position gain is shown multiplying the
negative of the system error which in turn is added to the control signal. This is consistent with
the convention normally used for servos, wherein the position gain multiplies the difference
6, -~ 6 between the reference and the actual positions. The quantity e defined above (6A.3) is
the negative of the system error as normally defined in clementary lexis.

The charcacteristic polynomial of the system is
s =1
0 sta

L3

The controllability test matrix Q and the matrix W are given respectively by

- To B 1
Q'“’"‘”'[ﬁ -aﬁ] W'[o |]

st - Al = = +as

Thus

ELEC

Systems

May 2017 - 28

Ex: Servo Motor Control [3]

Thus

0
ov-[3 ]

and

-1 |0 /B
[owy) [UB 0]

Thus the desired gain matrix, by the Bass-Gura formula (6.34), is

fo we d.-n]u[ a/B ]
‘ [lm o][ a 17 L@ -ave (eA=)

where @, and 4, are the cocfficients of the desired characteristic polynomial.
‘While the above calculation illustrates the general procedure, the gains could have been
more easily computed directly. For a control law of the form

u

(6A.4) becomes é

g€~ g

) & = —g,Be ~ (a + Bg)w
which has the closed-loop matrix

Am [ 0 1 ]
~gB ~(a+g,B)
with the characleristic equation

|sT = A= 5"+ (a + g:B)s + 9,8
Thus

d=atgp d=gB

ELEC 3004: Systems May 2017 - 29
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Ex: Servo Motor Control [4]

or
g9, = a;/B 9;

which is the same as (6A.5)

(a, —a)/B

Note that the position and velocity gains g, and g,, respectively, are proportional to the

amounts we wish to move the coefficients from their open-loop positions. The position gain g,

is necessary to produce a stable system: a, > 0
a, = a, i.e., to accept the open-loop damping, the

eliminates the need for a tachometer and reduces

But if the designer is willing to settle for

:n the gain g, can be zero. This of course

the hardware cost ol the system. It is also

possible to alter the system damping without the use of a tachometer, by using an estimate @

of the angular velocity w. This estimate is obtained by means of an observer as discussed in

Chap. 7

ELEC 3004: Systems

25May 2017 - 31

15



‘WIKIPEDIA
The Free Encyclopedia

Copyright that makes sense. That's fair.

Wikipedia relies on FAIR USE to bring you content in articles like the one you were just reading.
Under US

and s

ace e for readers a

Australia does not have Fair Use.

The government is currently

considering its response to the latest recommendation.

If you think Australia should adopt Fair Use

Take action

https://www. faircopyright.org.au/

ELEC 3004: Systems 25May 2017 - 32

< /assessable>

V AV AV 4 4V 4 & & 4 & /4

WARNING: NOT ASSESSABLE
YV D VYV VY

» Nothing beyond this point is on the exam.
(except for the exam review ©)

« Do not pay attention.
» Do not attempt to learn.

16



Application E
Inverted Pend

xample 1:
ulum

ELEC 3004: Systems

25May 2017 - 34

Digital Control

[ T
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o} = i® — 2ib cost + (36
The Lageangian s now given by

=1 (M + m) &® — mfif cosf + imwﬁ" — mgfcos
and the equations of motion are: -
doL oL
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dtgs 00

substituting 7, n these equatons and smplying leads t the equatons tha describe the mation o
(M +m) & — mlé cos + me6*sinf =
6 — gsinf = i cost

rf‘ )
£ ] i
B0 ‘ / V’\
0
Wikipedia, &

Cart and pole

-]
N
.
& [des]

1}
|
2 | 1
// \ L
4 1
e b "W
W
V
8
o 3
97 o4 06 08 1 12 14 05 1 15 7 25
tls) t[s]




Inverted Pendulum

1 1
L= iiﬂvf + Emvg —mgfcost

Velocity pick-off

S— where U1 is the velocity of the cart and U is the velocity of the point mass 112. ¥y and Uz can be
expressed in terms of x and § by writing the velocity as the first derivative of the position;

—w

2 .2
v =@

Simplifying the expression for Vg leads to:
vg = &% — 2080 cosd + £0°

The Lagrangian is now given by:

2
and the equations of motion are:
4oL aL
dt oz~ gr
daL aL
dtgé — a6

6 — gsind = i cosf

d * o /d :
vé = (E(I — fsin 6‘)) + (E(ﬂ casﬁ‘))

1 . 1,
L == (M+m)i? — mbifcosh + §m£’26‘2 — mglcosf

substituting [ in these equations and simplifying leads to the equations that describe the motion o

(M +m)i — mffcosf + m6sind = F

Inverted Pendulum — Equations of Motion

» The equations of motion of an inverted pendulum (under a
small angle approximation) may be linearized as:

0=uw
@ =06=0% +Pu

s M+m
— 1
P—Ml.

Where:

If we further assume unity Ml (Ml = 1), then P = 1

18



Inverted Pendulum —State Space

« We then select a state-vector as:

16 . [6] _[w
X = [w] hence x = [w] = [w]
» Hence giving a state-space model as:
[0 11, [0
4= 02 o]’B =4
» The resolvent of which is:
- -1
e o1 [ s 1 [s 1]
o@=61-7=| 0 V] =m@le s

» And a state-transition matrix as:

hot sinh Qt
B(t) = cosh Q 0

Q sinh Qt coshQt

Cart & Pole in State-Space With Obstacles?

Swing-up is a little more than stabilization...

See also;: METR4202 — Tutorial 11:

http://robotics.itee.uq.edu.au/~metrd202/tpl/tll-Weekll-pendulum.pdf

19
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Cart & Pole in State-Space

Swing-up is a little more than stabilization...

Application Example 2:
Inverted Pendulum

Mark I

ELEC 3004: Systems 25May 2017 - 41
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Inverted Pendulum (Friedland, Ch. 6 p. 232)

Velocity pick-off

s

Example 6B Stabilization of an inverted pendulum An inverted pendulum can readily be
stabilized by a closed-loop feedback system, just as a person of moderate dexterity can do it,

A possible control system implementation is shown in Fig. 6.3, for a pendulum con-
strained to rotate about a shaft at its bottom point. The actuator is a dc motor. The angular
position of the pendulum, being equal to the position of the shaft to which it is attached, is
measured by means of a potentiometer. The angular velocity in this case can be measured by
a **velocity pick-off” at the top of the pendulum. Such a device could consist of a coil of wire

LGl

Inverted Pendulum [2]

in a magnetic field created by a small permanent magnet in the pendulum beb. The induced
voltage in the coil is proportional to the linear velocity of the bob as it passes the coil. And
since the bob is at a fixed distence from the pivat point the linear velocity is proportional to
the angular velocity. The angular velocity could of course also be measured by means of a
tachometer on the dc motor shaft.
As determined in Prob. 2.2, the dynamic equations governing the inverted pendulum in
which the point of attachment does not translate is given by
0=w
(6B.1)
@ =0 — cw + Pu
where « and B are given in Example 6A, with the inertia J being the total reflected inertia:
J=1J,+m?

where m is the pendulum bob mass and [ is the distance of the bob from the pivot. The natural
frequency () is given by

0= mgl __ 9
J+ml® I+I/ml

(Note that the motor inertia J,, affects the natural frequency.)

Since the linearization is valid only when the pendulum is nearly vertical, we shall assume
that the control objective is to maintain # = 0. Thus we have a simple regulator problem.

The matrices A and b for this problem are

asfo L] e-[]

L
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Inverted Pendulum [3]

The open-loop characteristic polynomial is

5 =

_ o2 e
_O0® sta =s'tas-0

st = Al = I

Thus
a,=a
a; = -0*

The open-loop system is unstable, of course.
The controllability test matrix and the W matrix are given respectively by

o[y &1 w[o ]

(which are the same as they were for the instrument servo). And

0 un]
/B 0

Thus the gain matrix required for pole placement using (6.34), is
_ [ 0 us][(al = a)} _ [(a, +n*)m]
“lue o lla+or] T L -ays

Example 6C Control of spring-coupled masses The dynamics of a pair of spring-coupled
masses, shown in Fig. 3.7(a), were shown in Example 31 to have the matrices

[ewm1' = [

01 0 0 g
00 1 0 0
A= -
00 o 1 B=te
00 —K/M 0 1
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Inverted Pendulum [4]

The system has the characteristic’ polynamial
D(s) = 5* + (K/M)s*

Hence a;=a;=a,=0, a, = K/ M.
The controllability test and W matrices are given, respectively, by

00 0 1 1o K/M 0
0 K/M
g= 00 1 0 wol 0! / P
01 0 -K/M 00 1 0
1 0 -K/M 0 00 0 |
Multiplying we find that
00 0 I
ow=(owy=iowy'=[% % 1 ° (6c2)
B =(e o100 ’
I 00 0

(This rather simple result is not really as surprising as it may at first seem. Note that A is
in the first companion form but using the right-to-left numbering convention. IF the left-to-right
numbering convention were used the A matrix would already be in the companion form of
(6.11) and would not require transformation. The translormation matrix T given by (6C.2) has
the effect of changing the state variable numbering order from left-to-right to right-to-left, and
vice versa.)

The gain matrix g is thus given by

0001 a oy

o a1 oflm-k/mt| | a

o 10 0 a | |a-k/m
1000 a, .

ELEC 3004: Systems
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A suitable pole “ constellation™ for the closed-loop process might be a Butterworth pattern
as discussed in Sec. 6.5. To achieve this pattern the characteristic polynomial should be of the

form }
D(s) = st + (L +VDas? + 2+ VD2t + (1 +V/3)0%s + Q°

Thus _
a=_(1+ V3)0

a, =2+ »"':1151"
a = (1+V3)0
a, =0°
Thus the gain matrix g is given by
(18
(1+v3)0
2+ —K/M
(1+3)0

g=

ELEC 3004: Systems 25May 2017 - 47
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T
Today: “Bang-Bang Control!”

.
.
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Landrfiines:
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Land Mines: Highly Variable

« Little metal
.. “High-sensitivity”
detectors / instruments

« Highly Variable
(Example: PMN-2):
— 3-stage detonation
— Anti-thwart
— All mechanical

— Poor construction
detectors / instruments

. Focus on manipulating
sensor instead of
complex sensing ???,,,

—
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Back to Gyrphon ...

Rahict Contral:
INNUUUOU \UTTLT VI,
Command Shaping for Vibration Reduction
Integrated Command -
CZI:tr:gﬁ‘rar Siapp?ng ero—»] Regulator P Plant >
T -
|
|
L —Tumning — — Sensor |«

&
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Command Shaping

Original velocity profile

Velocity

»

=

Time ™

*

Input shaper

A

.
Time

Command-shaped velocity profile

Velocity

\ Tinle

Command Shaping in Position Space

Position

0.6

[}
!
\ n :
1 K ; ‘\
\‘ . ) \
[} /l N S Nie
\ ’ \__.'
Y @
AN
0 0.5 1 1.5
Time

==-A, Response
""" A, Response
—e—Total Response
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Command Shaping:

Zero Vibration and Derivative

—(m P
K = e(\/1—<2> 1=12
A 1 2K K?
v = | A+K)?2 (1+K)? (1+K)?
ti 0 L T,
For Gryphon: Atp=15[m] | Atp,=3.0[m]
R Al e ol
Axis2 &3 C O 0

Part of a Robotic Solution...

Nt R
ereo vision camei

Optional ground-
d

Counter-

___________
il T e

29



Gryphon Schematic

Joint3

Ground frame Fg

Manipulator Joint 2

Wrist joints

Sensor \

o

Counter-weight

Manipulator frame Fy Joint 1 (yaw)

Terrain

&

ryphon: Comparison to other tracked robots

Control Robustness (“Autonomy?)

&
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Multiple Inaccuracies

Sensing:
N

Screenshots courtesy- M Freese; Tokyo Tech:

Operational Overview

Heightmap Detecting

Terrain
scanning

Terrain

[Sensing (Stereo Environment Occupancy
Vision) Gnd

Calibration Model
(Offline Data)

Noisy terrain data

T
Planar conditional
filtering & map
generation (Online Data)

Terrain model relative to
robot base with offset

Path generation & ‘

. . Nominal Path
collection correction

Command Final trajectory
Shaping (with reduced vibration)

Screenshots courtesy M. Freese, Tokyo Tech.
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Terrain Modeling & Following Overview

* 1. Terrain Mapping * 1l. Terrain Model

Conditional Planner

Filtering & Stitching

« Ill. Path Generation V. Scanning

® Vv Evaluation
) & Marking

)
Height map expansion
& Path generation

Input-shaping

Terrain Mapping

+ Stereo depth maps (Pont Gray Bumblebee)
+ Kinematic calibration corrections

Ex,: Grassy area
with hill or bump

L
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Terrain Geometry Model: Heightmap Expansion

i

Scanning gap

As Surface Normals:

Filtered
Model

Expanded .
and Offset

ELEC 3004: Systems 25May 2017 - 66

Terraln Geometr'y Model

= .-

+ Planarity: Found from plane eq. residuals for a surface
patch

» Filter type and strength varied based on this
» Goal: Reduce noise without feature degradation

ELEC 3004: Systems 25May 2017 - 67
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Terrain Map—>Model:
Conditional Planar Filter

Apply
filter(s)

ELEC 3004: Systems 25May 2017 - 68

Map = Model (Il): Height Map Expansion
» Envelope expansion:
— Few = Fieyr T scanning gap ...

g éé%; Scanning gap d

— Performed along the normals, more than vertical axis
addition:

ELEC 3004: Systems 25May 2017 - 69
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Map =2 Model (lIl): Height Map Expansion

Terrain
envelope

Model of

terrain
Scanning gap

LGl

Calibration Model

+ Height (z) Calibration:

* Plane (x-y) Calibration ]
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Effect of Overall Calibration Matrix

30 1
—— With Overall Calibration Matrix
25 correction

Without Overall Calibration Matrix
20 correction

Deviation from ideal path [mm]
=

5 | /\/\ /_/\/\

’ V \r\l\/ | - \w\ |
0 0.5 1 1.5
Circular distance [m]

Scanning speed: 100 mm/s
Scanning gap: 100 mm

Path Generation

 X-y: Scanning Scheme * z: Terrain Sampling (z)
» Joint-space/Work-space? » Sample corresponding
+ Reduce excess work ... point based on the local

patch & normals

z = X
Manipulator . Detector path f(;nv( path 7ypath)
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Path Generation (Il)

« Orientation: Advanced Terrain Following

Scanning on ~ | evel Terrain - Measurements

Unfiltered

— — Gaussian filtered

Conditional Planar filtered

— r
0 . y A v B

- v

W w P R

- \

5 | ‘_!/ Laser range

\ finder

Deviation from ideal path [mm]
(4,1

Manipulator

0 0.5 1

Circular distance [m] AN
Scan pass

Scanning speed: 100 mm/s
Scanning gap: 100 mm




Scanning on Rough Terrain - Measurements

30 r

20 r

Deviation from ideal path [mm]

Obstacle location

Unfiltered

— — Gaussian filtered

Conditional Planar filtered

Laser range

0 0.5

Scanning speed: 100 mm/s
Scanning gap: 100 mm

Circular distance [m]

1

i

/

Command Shaping Tests: Step-Response

* Reduced Joint
Encoder Vibration
Joint 1 (ATV Yaw) Encoder:

Joint 1 angle [deg]

6 6.5

5.5 g 7 7.5
Joint 3 (Arm Extend) Encoder:

386

—— Unshaped
-~ Shaped

Joint 3 mgle [deg]

* Reduced Tip
Acceleration

g&;)"‘l /Lf\f\
i EV A

k
W
56

ik

85 9

—— Unshaped
Shaped
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../../../../Cache/FSR Talk/GYRPHON CACHE/inputShapingEffect2.avi

High-Level Control Software

&

Detector Imaging

» Targets

PMA-2 Fragment
Target# Target type Depth [cm] MD GPR
1 PMA-2 5 Yes No
2 PMA-1A 125 Yes Yes
3 PMA-1A 125 Yes Yes
4 PMA-1A 125 Yes Yes
5 Fragment 5 Yes No
6 Stone ~10 No Yes
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Gryphon: Field Tests in Croatia & Cambodia

Y ¥ &3
Y e
_,-.‘-.— -

S
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<

L I i s
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End on a “Bang, Bang”...

ELEC 3004: Systems 25 May 2017 - 81
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A Better (Controlled) “Bang Bang”

Announcement

from the UQ Central
EXAMINATIONS

DEPARTMENT !

(A: create change [in the lec

25May 2017 - 83
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for your examinations?

Are you prepared

Do you:

1.
2.
3.

Have your current UQ student ID card?
Know where your examination is being held?

Know what materials you are permitted to bring to the
examination? (check with your course coordinator)

Have an approved / labelled calculator (in exams
where calculators are permitted)

25 May 2017 - ELEC 3004: Systems 84

for your examinations? |

For each examination, ensure you:
1. Have rechecked your personalised examination timetable for

Are you prepared

date, time and venue

Have your current UQ student ID card on hand and be ready to
present on entry to the examination venue — should you forget
it, you must report to the Student Centre before your
examination

Have spare pencils and pens, as well as any permitted
materials

Arrive at your examination venue 15 minutes before the
scheduled start and 30 minutes if the examination is held at
the UQ Centre

25 May 2017 - ELEC 3004: Systems 85
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Examination Timetable %

v\
\/
Students are provided with a personalised examination timetable to
their UQ email account, detailing their;

* Schedule of examinations

* Date, start time and exam duration

* Campus and specific venue to which they must attend for each
examination

It is important that students;

* Attend to the venue listed on their examination timetable 15-30
minutes before the exam is due to commence
* Are in possession of their UQ Student ID card

* Have an approved calculator should it be permitted for the

examination
25 May 2017 - ELEC 3004: Systems
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Student ID Card — Essential!

All Students MUST i oo

PARTTING

R STUDENT
present a current ]
UQ Student ID card it
to gain entry to the Given Middle-Name

SURNAME

examination venue

25 May 2017 - ELEC 3004: Systems
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Approved Calculators in Examinations

With the exception of the Casio fx-82 series,
all calculators used during an exam must
have an official "Approved" label.

Labels are available from the Student Centre.

Calculators must be approved in advance of
the examination period.

Check out my.UQ
(https://my.ug.edu.au/information-and-
services/manage-my-program/exams-and-
assessment/sitting-exam/approved-calculators )

25 May 2017 - ELEC 3004: Systems 88

Mobile Phones in Examinations

GOT A MOBILE
PHONE?

Turn it off and place it under
your chair in the exam
venue. Students found

with a mobile phone on
their person are in breach of University
regulations and will be dealt with under
the University’s misconduct provisions.

25 May 2017 - ELEC 3004: Systems 89
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A student who attends and attempts whole or part of the original examination will not be
eligible for a deferred examination.

So how could this ruling affect you if you are unwell?

Either: Commence and finish your examination; or

Do not attend your examination, obtain a medical certificate
from your doctor and apply for a Deferred Examination.

Check your eligibility criteria before you make a decision!

Please see the my.UQ website (https://my.uqg.edu.au/services/exams-and-assessment) or

ask at the Student Centre for assistance.

25 May 2017 - ELEC 3004: Systems 90

Students will be permitted to enter the
examination venue until one hour into the
examination (eg 08:00am exam start, entry until
09:00am).

Students will not be permitted to leave an
examination until one hour of the examination
has elapsed (eg 08:00am exam start, leave at
09:00am).

25 May 2017 - ELEC 3004: Systems 91
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Students will not be permitted to wear watches
in examinations.

Watches may be placed under the student’s chair

or on the corner of the student’s desk for the
duration of the examination.

25 May 2017 - ELEC 3004: Systems 92

For further information on -
Taking materials into the exam room
Arriving at an exam venue
What if | become sick during an exam?
Leaving the exam room
Finishing an exam

Refer to my.UQ (https://my.ug.edu.au/information-
and-services/manage-my-program/exams-and-

assessment/sitting-exam) <j
Back

to your regularly
25 May 2017 - ELEC 3004: Systems scheduled lectuté
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Next Time...

+ Digital Feedback Control

* Review:
— Chapter 2 of FPW

* More Pondering??
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