
http://elec3004.com

Systems Overview

ELEC 3004: Systems: Signals \& Controls
Dr. Surya Singh
Lecture 2
elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/
March 2, 2017

Lecture Schedule:

Week	Date	Lecture Title
1	28-Feb	Introduction
	2-Mar	Systems Overview
2	7-Mar	Systems as Maps \& Signals as Vectors
	9-Mar	Data Acquisition \& Sampling
3	14-Mar	Sampling Theory
	16-Mar	Antialiasing Filters
4	21-Mar	Discrete System Analysis
	23-Mar	Convolution Review
5	28-Mar	Frequency Response
	30-Mar	Filter Analysis
5	4-Apr	Digital Filters (IIR)
	6-Apr	Digital Windows
6	11-Apr	Digital Filter (FIR)
	13-Apr	FFT
	18-Apr	Holiday
	$20-\mathrm{Apr}$	
	25-Apr	
7	27-Apr	Active Filters \& Estimation
8	2-May	Introduction to Feedback Control
	4-May	Servoregulation/PID
10	9-May	Introduction to (Digital) Control
	11-May	Digitial Control
11	16-May	Digital Control Design
	18-May	Stability
12	23-May	Digital Control Systems: Shaping the Dynamic Response
	25-May	Applications in Industry
13	30-May	System Identification \& Information Theory
	1-Jun	Summary and Course Review

Prere-quiz-ite Solutions ©

QI: Complex Solutions to Real Problems

Can an ODE with only real constant coefficients have a complex solution?

- Yes, because the coefficients do not give the solution, but rather setup an equation that instead gives a solution
- For example:

$$
y^{\prime \prime}+y=0
$$

- Has solutions:

$$
e^{i x} \text { and } e^{-i x}
$$

EHA ELEC 3004: Systems

Q2: Transfer Functions and the s-Domain [I]

Final Value Theorem

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

Latex Version:
$\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)$

- For systems that are valid (i.e., stable):
- Roots of the denominator of $\boldsymbol{H}(\boldsymbol{s})$ must have negative real parts.
- $\boldsymbol{H}(\boldsymbol{s})$ must not have more than one pole at the origin.

Q2: Transfer Functions and the s-Domain [2]

- $G_{a}(s)=\frac{3004}{s+4}$

Impulse Response of $\mathbf{G}_{\mathbf{a}}$

- $G_{b}(s)=\frac{3004}{s-4}$

Q2: Transfer Functions and the s-Domain [3]

- $G_{c}(s)=\frac{3004}{s^{2}+4} \left\lvert\, \cdot G_{d}(s)=\frac{3004}{s^{4}+4}\right.$

Impulse Response of $\mathbf{G}_{\mathbf{c}}$

Q2: Transfer Functions and the s-Domain [4]

- $G_{e}(s)=\frac{3004}{s^{2}+4 s}$
- $\mathrm{G}_{\mathrm{f}}(s)=\frac{3004}{4}=751$
- Not a "dynamic system"

Q2: Transfer Functions and the s-Domain [2]

- $G_{a}(s)=\frac{3004}{s+4}$

Impulse Response of $\mathbf{G}_{\mathbf{a}}$

- $G_{b}(s)=\frac{3004}{s-4}$

Q2: I ranster Functions and the s-Domain [3] Matlab Source for Graphs

```
%% ELEC 3004 Quiz 0 -- Q2
% Ga
a=[3004]; b=[1 4]; Ga=tf(a, b); figure(10);
impulse(Ga); title('Impulse Response of G_a');
% Gb
    a=[3004]; b=[1 -4]; Gb=tf(a, b); figure(20);
    impulse(Gb); title('Impulse Response of G_b');
    % Gc
    a=[3004]; b=[1 0 4]; Gc=tf(a, b); figure(30);
    impulse(Gc); title('Impulse Response of G_c');
    % Gd
    a=[3004]; b=[1 0 0 4]; Gd=tf(a, b); figure(40);
    impulse(Gd); title('Impulse Response of G_d');
    % Ge
    a=[3004]; b=[1 4 0]; Ge=tf(a, b); figure(50);
    impulse(Ge); title('Impulse Response of G_e');
    % Gf
    a=[3004]; b=[4]; Gf=tf(a, b); figure(60);
    impulse(Gf); title('Impulse Response of G_f');
```


Q3: Free Determination

- False:

$$
\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)
$$

- True:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

Q4: Free Determination : All TRUE

- True:
$A=L U:$ is a factorization that is basically an elimination
- True:

If \boldsymbol{A} is invertible, then the only solution to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ is $\boldsymbol{x}=\mathbf{0}$.

- True:

Linear Equations ($A x=b$) come from steady-state problems. eigenvalues ($A x=\lambda x$) have importance in dynamic problems.

Q5: Convolution!: All TRUE

Q6: A Signal Re-volution!

Frame 1

Frame 2

Frame 3

Frame 4
A. It could be rotating either way (CW or CCW). The angular velocity is $\dot{\theta}=\frac{\Delta \theta}{\Delta t}=\left[\frac{(2 n+1) \pi}{\frac{1}{25}}\right] \Rightarrow 12.5 \mathrm{rev} /$ second
B. Speeds $(\mathrm{m} / \mathrm{s})$:

$$
\mathrm{v}=\omega \times r=25 \pi \frac{\mathrm{rad}}{\mathrm{~s}} \cdot(0.32 \mathrm{~m})=25.1 \frac{\mathrm{~m}}{\mathrm{~s}}=90.5 \mathrm{kmh}
$$

C. Speed $_{\text {car }} \stackrel{?}{=}$ Speed $_{\text {wheel }}$:

- Straight line (no turning)
- Full traction
- No suspension effects ...
- What is the frame of reference? Should be picked with care!

Signals \& Systems: A Primer!

Follow Along Reading:

B. P. Lathi

Signal processing
and linear systems
1998
TK5102.9.L38 1998

- Chapter 1
(Introduction to Signals and Systems)
- § 1.2: Classification of Signals
- § 1.2: Some Useful Signal Operations
- § 1.6 Systems
- Chapter B (Background)
- B. 5 Partial fraction expansion
- B. 6 Vectors and Matrices

An Overview of Systems

- Today we are going to look at $\mathbf{F}(\mathrm{x})$!

- F(x): System Model
- The rules of operation that describe it's behaviour of a "system"
- Predictive power of the responses
- Analytic forms > Empirical ones
- Analytic formula offer various levels of detail
- Not everything can be experimented on ad infinitum
- Also offer Design Intuition (let us devise new "systems")
- Let's us do analysis! (determine the outputs for an input)
- Various Analytic Forms
- Constant, Polynomial, Linear, Nonlinear, Integral, ODE, PDE, Bayesian..

Modelling Ties Back with ELEC 2004

- Linear Circuit Theorems, Operational Amplifiers
- Operational Amplifiers
- Capacitors and Inductors, RL and RC Circuits
- AC Steady State Analysis
- AC Power, Frequency Response
- Laplace Transform
- Reduction of Multiple Sub-Systems
- Fourier Series and Transform
- Filter Circuits

\rightarrow Modelling Tools!

System Terminology

Linear Systems

- Model describes the relationship between the input $\mathbf{u}(\mathrm{x})$ and the output $\mathbf{y}(\mathrm{x})$
- If it is a Linear System (wk 3):

$$
y(t)=\int_{0}^{t} F(t-\tau) u(\tau) d \tau
$$

- If it is also a (Linear and) lumped, it can be expressed algebraically as:

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& y(t)=C(t) x(t)+D(t) u(t)
\end{aligned}
$$

- If it is also (Linear and) time invariant the matrices can be reduced to:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

Laplacian:

$$
y(s)=F(s) u(s)
$$

WHY? This can help simplify matters...

For Example: Consider the following system:

- How to model and predict (and control the output)?

This can help simplify matters...

Consider the following system:

- How to model and predict (and control the output)?

This can help simplify matters...

- Consider the following system:

$$
\dot{x}=A x, \quad y=C x
$$

- $x(t) \in \mathbb{R}^{8}, y(t) \in \mathbb{R}^{1} \rightarrow 8$-state, single-output system
- Autonomous: No input yet! $(u(t)=0)$

System Classifications/Attributes

1. Linear and nonlinear systems
2. Constant-parameter and time-varying-parameter systems
3. Instantaneous (memoryless) and dynamic (with memory) systems
4. Causal and noncausal systems
5. Continuous-time and discrete-time systems
6. Analog and digital systems
7. Invertible and noninvertible systems
8. Stable and unstable systems

Expanding on this: Types of Linear Systems

- LDS:

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& y(t)=C(t) x(t)+D(t) u(t)
\end{aligned}
$$

- LTI - LDS:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

Types of Linear Systems

- LDS:

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& y(t)=C(t) x(t)+D(t) u(t)
\end{aligned}
$$

To Review:

- Continuous-time linear dynamical system (CT LDS):

$$
\frac{d x}{d t}=A(t) x(t)+B(t) u(t), \quad y(t)=C(t) x(t)+D(t) u(t)
$$

- $\boldsymbol{t} \in \mathbb{R}$ denotes time
- $x(t) \in \mathbb{R}^{\mathrm{n}}$ is the state (vector)
- $u(t) \in \mathbb{R}^{\mathrm{m}}$ is the input or control
- $y(t) \in \mathbb{R}^{p}$ is the output

Types of Linear Systems

- LDS:

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& y(t)=C(t) x(t)+D(t) u(t)
\end{aligned}
$$

- $\mathrm{A}(\mathrm{t}) \in \mathbb{R}^{\mathrm{nxn}}$ is the dynamics matrix
- $\mathrm{B}(\mathrm{t}) \in \mathbb{R}^{\mathrm{nxm}}$ is the input matrix
- $\mathrm{C}(\mathrm{t}) \in \mathbb{R}^{\mathrm{p} \times \mathrm{n}}$ is the output or sensor matrix
- $\mathrm{D}(\mathrm{t}) \in \mathbb{R}^{\mathrm{pxm}}$ is the feedthrough matrix
\rightarrow state equations, or " m-input, n-state, p-output' LDS

Types of Linear Systems

- LDS:

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& y(t)=C(t) x(t)+D(t) u(t)
\end{aligned}
$$

- Time-invariant: where $\mathrm{A}(\mathrm{t}), \mathrm{B}(\mathrm{t}), \mathrm{C}(\mathrm{t})$ and $\mathrm{D}(\mathrm{t})$ are constant
- Autonomous: there is no input u (B, D are irrelevant)
- No Feedthrough: D = 0
- SISO: $u(t)$ and $y(t)$ are scalars
- MIMO: $u(t)$ and $y(t)$: They're vectors: Big Deal ?

Discrete-time Linear Dynamical System

- Discrete-time Linear Dynamical System (DT LDS) has the form:

$$
x(t+1)=A(t) x(t)+B(t) u(t), \quad y(t)=C(t) x(t)+D(t) u(t)
$$

- $\boldsymbol{t} \in \mathbb{Z}$ denotes time index $: \mathbb{Z}=\{0, \pm 1, \ldots, \pm \mathbf{n}\}$
- $x(t), u(t), y(t) \in$ are sequences
- Differentiation handled as difference equation:
\rightarrow first-order vector recursion

Discrete Variations \& Stability

$$
y(s)=F(s) u(s)
$$

- Is in continuous time ...
- To move to discrete time it is more than just "sampling" at: $2 \times$ (biggest Frequency)
- Discrete-Time Exponential

$$
\begin{gathered}
F(t) \rightarrow F[k T] \\
e^{\frac{k}{T}}=\gamma^{k} \\
\frac{1}{T}=\ln \gamma
\end{gathered}
$$

- SISO to MIMO
- Single Input, Single Output
- Multiple Input, Multiple Output
- BIBO:
- Bounded Input, Bounded Output
- Lyapunov:
- Conditions for Stability
\rightarrow Are the results of the system asymptotic or exponential

Linear Systems

Linearity:

- A most desirable property for many systems to possess
- Ex: Circuit theory, where it allows the powerful technique or voltage or current superposition to be employed.

Two requirements must be met for a system to be linear:

- Additivity
- Homogeneity or Scaling

Additivity U Scaling \rightarrow Superposition

Linear Systems: Additivity

- Given input $x_{1}(t)$ produces output $y_{1}(t)$ and input $x_{2}(t)$ produces output $y_{2}(t)$
- Then the input $x_{1}(t)+x_{2}(t)$
must produce the output $y_{1}(t)+y_{2}(t)$
for arbitrary $x_{1}(t)$ and $x_{2}(t)$
- Ex:
- Resistor
- Capacitor
- Not Ex:
$-y(t)=\sin [x(t)]$

4. ELEC 3004: Systems

Linear Systems: Homogeneity or Scaling

- Given that $x(t)$ produces $y(t)$
- Then the scaled input a $\cdot x(t)$ must produce the scaled output a $\cdot y(t)$
for an arbitrary $x(t)$ and a
- Ex:
$-y(t)=2 x(t)$
- Not Ex:
$-y(t)=x^{2}(t)$
$-y(t)=2 x(t)+1$

Linear Systems: Superposition

- Given input $x_{1}(t)$ produces output $y_{1}(t)$ and input $x_{2}(t)$ produces output $y_{2}(t)$
- Then: The linearly combined input

$$
x(t)=a x_{1}(t)+b x_{2}(t)
$$

must produce the linearly combined output

$$
y(t)=a y_{1}(t)+b y_{2}(t)
$$

for arbitrary a and b

- Generalizing:
- Input: $x(t)=\sum_{k} a_{k} x_{k}(t)$
- Output: $y(t)=\sum_{k} a_{k} y_{k}(t)$

Consequences:

- Zero input for all time yields a zero output.
- This follows readily by setting $a=0$, then $0 \cdot x(t)=0$
- DC output/Bias \rightarrow Incrementally linear
- Ex: $y(t)=[2 x(t)]+[1]$
- Set offset to be added offset [Ex: $\left.y_{0}(t)=1\right]$

Dynamical Systems...

- A system with a memory
- Where past history (or derivative states) are relevant in determining the response
- Ex:
- RC circuit: Dynamical
- Clearly a function of the "capacitor's past" (initial state) and
- Time! (charge / discharge)
- R circuit: is memoryless \because the output of the system (recall $\mathrm{V}=\mathrm{IR}$) at some time \mathbf{t} only depends on the input at time \mathbf{t}
- Lumped/Distributed
- Lumped: Parameter is constant through the process \& can be treated as a "point" in space
- Distributed: System dimensions \neq small over signal
- Ex: waveguides, antennas, microwave tubes, etc.

Causality:

Causal (physical or nonanticipative) systems

- Is one for which the output at any instant t_{0} depends only on the value of the input $x(t)$ for $t \leq \mathbf{t}_{\mathbf{0}}$. Ex:

```
u(t)=x(t-2) => causal
u(t)=x(t-2)+x(t+2)=> noncausal
```

- A "real-time" system must be causals
- How can it respond to future inputs?
- A prophetic system: knows future inputs and acts on it (now)
- The output would begin before t_{0}
- In some cases Noncausal maybe modelled as causal with delay
- Noncausal systems provide an upper bound on the performance of causal systems

Causality:

Looking at this from the output's perspective...

- Causal $=$ The output before some time t does not depend on the input after time t.
Given: $y(t)=F(u(t))$
For:

$$
\widehat{u}(t)=u(t), \forall 0 \leq t<T \text { or }[0, T)
$$

Then for a $\mathrm{T}>0$:
$\rightarrow \widehat{y}(t)=y(t), \forall 0 \leq t<T$

Causal

Noncausal

ELEC 3004: Systems

Systems with Memory

- A system is said thave memory if the output at an arbitrary time $t=t_{*}$ depends on input values other than, or in addition to, $x\left(t_{*}\right)$
- Ex: Ohm's Law

$$
V\left(t_{o}\right)=R i\left(t_{o}\right)
$$

- Not Ex: Capacitor

$$
V\left(t_{0}\right)=\frac{1}{C} \int_{-\infty}^{t} i(t) d t
$$

Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If $x(t)$ produces output $y(t)$
- Then $x\left(t-t_{0}\right)$ produces output $y\left(t-t_{0}\right)$
- Ex: Capacitor
- $V\left(t_{0}\right)=\frac{1}{c} \int_{-\infty}^{t} i\left(\tau-t_{0}\right) d \tau$

$$
=\frac{1}{C} \int_{-\infty}^{t-t_{0}} i(\tau) d \tau
$$

$$
=V\left(t-t_{0}\right)
$$

4.7) ELEC 3004: Systems

Time-Invariant Systems

- Given a shift (delay or advance) in the input signal
- Then/Causes simply a like shift in the output signal
- If $x(t)$ produces output $y(t)$
- Then $x\left(t-t_{0}\right)$ produces output $y\left(t-t_{0}\right)$

