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Lecture Schedule:

Week Date Lecture Title
28-FebjIntroduction

2-MarSystems Overview

7-MarSystems as Maps & Signals as Vectors

9-Ma%S¥slems: Linear Differential Systems
14-Mar

ling Theory & Data Acquisition
lé-Ma%Aliasing & Antialiasing
4 21-MarDiscrete Time Analysis & Z-Transform
23-MarSecond Order LTID (& Convolution Review)
5 28—Ma3Frequency Response
30-MarFilter Analysis
4-ApnDigital Filters (IIR) & Filter Analysis

1

@ 6-AprDigital Filter (FIR)

7 11-AprDigital Windows
13-Apt]FFT
18-Apr|
20-Apr] Holiday
25-Api

8 27-ApnActive Filters & Estimation

9 2-May|Introduction to Feedback Control
4-May|Servoregulation/PID

10 9-May|PID & State-Space

11-MayState-Space Control

11 |_16-MayDigital Control Design
18-May|Stabilit
23-May|Digital Control Systems: Shaping the Dynamic R

12 25-May|Applications in Industry
13 30-May|System Identification & Information Theory

1-JunSummary and Course Review



http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
http://elec3004.com/
http://elec3004.com/

Follow Along Reading:

p— Today

B. P. Lathi -> State-space € ey o

Signal processing
and linear systems
1998 « FPW

TK5102.9..38 1998 — Chapter 4: Discrete Equivalents to
Continuous

G. Franklin, - T_ransfer Functions: The Digital
J. Powell, Filter
M. Workman

Digital Control = s
of Dynamic Systems: « | athi Ch. 13

1990 :  — §13.2 Systematic Procedure for
Determining State Equations

TJ216.F721990 i  _ i i

[Available as 8§ 13.3 Solution of State Equations

UQ Ebook] - Next Time  weveeeessssesssesesassssssssssesasssssnseeas E

Final Exam Information announcement

» Date:
Saturday, June/10

(remember buses on Saturday Schedule)

e Time:
4:30-7:45 (+/-)

|

« Location: =
TBA

» UQ Exams are now “ID Verified”
=>» Please remember your ID! €
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Final Exam Information

. Section 1: R — e
— Digital Linear Dynamical Systems @3?%‘5:&5?,{; —
5 Questions S poapn
60 Points (33 %)
School of Intormati gy srd Electrical
EXAMINATION
. Section 2: L1300 Sgna,Sysam & Conel
— Digital Processing / Filtering of [ comvmen e
Signals S
— 5 Questions
— 60 Points (33 %)
+  Section 3: et i
— Digital & State-Space Control ;f::
— 5 Questions T
— 60 Points (33 %)

NEXT WEEK: Lab 4 — Levilab II:

« AKA “Revenge of the TUNING!”




Lab 4 News:
Digital PID Controls

(AKA: Magic “PID Made Easy”
Equations)

ELEC 3004: Systems |6 May 2017 - 7

Implementation of Digital PID Controllers

We will consider the PID controller with an s-domain transfer function

U(s)
X(s)

K;
= Gs) = Kp+ -1 + Kps. (13.54)

We can determine a digital implementation of this controller by using a discrete
approximation for the derivative and integration. For the time derivative, we use
the backward difference rule

d 1

wkT) = 5| = —(x(kT) — x[(k — 1)T]). (13.55)
dat gy 1

The z-transform of Equation (13.55) is then

_] -
X(z)="=

Tz

—Z

T 1 X(z).

U(z) = c

The integration of x(f) can be represented by the forward-rectangular integration at
t = kT as

u(kT) = u[(k — 1)T] + Tx(kT), (13.56)

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1




Implementation of Digital PID Controllers (2)

where u(kT) is the output of the integrator at t = k7. The z-transform of Equation
(13.56) is

U(z) =z 0(z) + TX(2),
and the transfer function is then

U(z) Tz

Xz z-1

Hence, the z-domain transfer function of the PID controller is

. KTz z-1
G(z) = Kp + Z L f KDW'[z

(13.57)

The complete difference equation algorithm that provides the PID controller is
obtained by adding the three terms to obtain [we use x(k7) = x(k)]

u(k)

Kpx(k) + K [u(k — 1) + Tx(K)] + (Kp/T)[x(k) — x(k — 1)]
= [Kp + K;T + (Kp/T)]x(k) — KpTx(k — 1) + Kk — 1). (13.58)

Equation (13.58) can be implemented using a digital computer or microprocessor.
Of course, we can obtain a P1 or PD controller by setting an appropriate gain equal
to zero.

Source: Dorf & Bishop, Modern Control Systems, §13.9, pp. 1030-1

Back to State-Space ...

Solving State Space
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Great, so how about control?

» Given x = Fx + Gu, if we know F and G, we can design a

controller u = —Kx such that
eig(F—GK) <0

* Infact, if we have full measurement and control of the states of x,
we can position the poles of the system in arbitrary locations!

(Of course, that never happens in reality.)

Solving State Space...

* Recall:

r= f(x,u,t)
 For Linear Systems:

z(t) =A@)z () + B(@)u(l)
y(t) =C (@) x(t) + D () u(t)

 ForLTI:
— x = Ax + Bu

Cx+ Du

— Y




=» Solutions to State Equations

x =Ax + Bu
sX(s) —x(0) = AX(s) + BU(s)
X(s) = (sl —A) x(0) + (sI — A)~1BU(s)

X(s) = L[e4t]x(0) + L[eAt]BU(s)

t
x(t) =j et Bu(t)dr
0

= At

=» State-Transition Matrix ®

o ®(t) =et =L7Y(sI - A

It contains all the information about the free motions of the
system described by x = Ax

LTI Properties:

e d(0) =€ =1

o d71(t) = d(-t)

o O(ty +ty) = P(t)P(tz) = P(E2)D(¢)
o [®(O)]" = ®(nt)

=>» The closed-loop poles are the eignvalues of the system matrix




Digital State Space:

« Difference equations in state-space form:

« Where:

x[n+ 1] = Ax[n] + Bu[n]
y[n] = Cxn] + Duln]

— u[n], y[n]: input & output (scalars)
— X[n]: state vector

Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system
is given by (2.43),

x = Fx + Gu, (6.1)
and (2.44),

y = Hx. (6.2)

We assume the control is applied from the computer by a ZOH as shown in
Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as
given by (2.57),

x(k +1) = ®x(k) + Tulk),

y(k) = Hx(k), (6.3)

where
@ =¢FT, (6.42)
= /0 ePdnG, (6.4b)




Discretisation (FPW!)

« We can use the time-domain representation to produce
difference equations!

KT+T

x(kT +T) = efT x(kT) + j eFKTHT-D Gy (1) dT
kT

Notice u(7) is not based on a discrete ZOH input, but rather
an integrated time-series.

We can structure this by using the form:
u(r) = u(kT), kT <t <kT+T

State-space z-transform

We can apply the z-transform to our system:
(z1 —®)X(z) =TU(k)
Y(z) = HX(2)

which yields the transfer function:

Y(z) _
X&) =G(z) =H(zl - ®)°Ir




State-space control design
dQue pasa???”?

 Design for discrete state-space systems is just like the
continuous case.
— Apply linear state-variable feedback:
u=—Kx
such that det(zl — ® +T'K) = a.(2)
where a.(z) is the desired control characteristic equation

Predictably, this requires the system controllability matrix
C=[ ®r &2r - & 1r] to be full-rank.

Solving State Space

ELEC 3004: Systems |6 May 2017 - 20
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A Systematic Procedure for Determining State Egs.

1. Choose all independent capacitor voltages and inductor
currents to be the state variables.

2. Choose a set of loop currents; express the state variables and
their first derivatives in terms of these loop currents.

3. Write the loop equations and eliminate all variables other
than state variables (and their first derivatives) from the
equations derived in Steps 2 and 3.

See also: Lathi § 13.2-1 (p. 788)

A Quick Example
0 @ m 10
O EE:H O Qasip Q :E {

1. The inductor current g, and the capacitor voltage g2 as the state variables.

9 W=k =20 — i)~ ¢
] s . P
342 = i2 — i3 ;
M=k I Qi=—g—q+3ix
3 4f1 —?.ig:J.' Q2=7-4|—§£Iz
22—+ +q@=0

i1 -

See also: Fig. 13.2, Lathi p. 789
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Another Example

Lead-211"

Thallium-207

T B VYo

at

IN2(¢ N AN
N a. d_{;) = A 2}\- 2({) + A lj\l l(f)

o S = AN+ AN

Iris

£20 =) N3(D)

dt

Bismuth-211*
B @ | 2.1 minutes
36 minutes

Lead-207 (stable)

4.8 minutes

Another Example

Bismuth-211*
B @ | 2.1 minutes
36 minutes

Lead-211*

Thallium-207

N, Nl
. NQ o NQ
X = N3 -+ X = N3
Ng Na
Ny -1 O
o N2 . A1 —Ap
X=FX > N3 |~ | 0 X
Ny 0 0

Lead-207 (stable)

4.8 minutes

0
0
_)\3
A3

efeRole)

12



Another Example

Bismuth-211*
B @ | 2.1 minutes
36 minutes

Lead-211* Lead-207 (stable)

4.8 minutes

Thallium-207

* Ny (=N (0)exp(-A,)

A

o N2(f) = N2(0)exp(— A »1) —N](O)}L: : __(exp(— A 5f) —exp(= A ;1))

* N3(f)= LA ,N1(0) [r}”

exp(=h ,f) | exp(=h 5 1) ) exp(—h 50)
k) A )shy) | Gk (k)

® N4#) =k A ,yhN10) [Ez;—a e)?fl_j/;u—f 51 S S 1 ]

RS T A T & h ) + Gk kg

Example: PID control

 Consider a system parameterised by three states:
- X1,X2,X3
— Whel‘e x2 = 5(1 and X3 = 5(2

1
X= 1 x — Ku
-2
y=1[0 1 O0]x+0u

X, 1S the output state of the system;
x,1s the value of the integral,
x5 is the velocity.

13



Example: PID control [2]

» We can choose K to move the eigenvalues of the system
as desired:

1—-K;

=0

det 1-K,

_2 - K3
All of these eigenvalues must be positive.

It’s straightforward to see how adding derivative gain
K5 can stabilise the system.

Can you use this for
more than Control?

YES!

ELEC 3004: Systems |6 May 2017 - 28
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Frequency Response in State Space

1
10022 — 2002 + 80

H(z)=C(:I-A)'B+D=
Poles at = .55, 1.45.
Eigenvalues of A:
1,1,1.45,.55

What are the (physical)
implications?

The Approach:

» Formulate the goal of control as an optimization (e.g. minimal impulse response,
minimal effort, ...).

You’ve already seen some examples of optimization-based design:

— Used least-squares to obtain an FIR system which matched (in the least-squares sense)
the desired frequency response.

— Poles/zeros lecture: Butterworth filter

Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

,
. 08
06
8" 0
2 2
T 04 = O X
2 = o2
= 0.4r -0.4
-06
02t -08
-1
% 1 5 6 -1 05 05 1

2 3 4
Frequency (rad/sec)
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

’
’ 0.8
0.6
L 0.4
8 08 X
5 o 02
= @
c 06 c 0 O
3 = -0z
= 0.4 -0.4 ' X
-0.6
0.2f -0.8
-1
0 , .
0 1 2 3 4 5 3 -1 -05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

Magnitude

I
s
T

0.2

0 1

2 3 4
Frequency (rad/sec)

16



“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

;
] 0.8
06 X
L 0.4
g 0.8
S o 02 X
= @
c 0.6 c 0 O
@ = oz X
= 0.4 -0.4 .
-06 : X
0.2+ -0.8 :
-1
0 . .
0 1 5 6 -1 -0.5 0.5 1

2 3 4
Frequency (rad/sec)

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

;
; 0.8
0.6 X
L 0.4
g 0.8 %
S o 0.2
2
T 06 g 0 O
=) £
© -0.2
=04 ~0.4
-06 X
0.2¢ -08
-1
o )
0 1 5 6 -1 0.5 0.5 1

2 3 4
Frequency (rad/sec)
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“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.

4
; 08
06 X
F 04
2 0.8 X
S = 02 %
'C 06 = O x
= — 02
= 0.4+ -0.4 X
-06 :
X
0.2} -08 .
-1
0 . : ,
0 1 2 3 4 5 6 -1 -05 0 05 1
Frequency (rad/sec) Real

“Maximally-flat filter”. Sacrifice sharpness to have flat response in
pass band and stop band.
,
1 0.8
0.6 X
o 08 0.4 X
o 0.2 X
=1 (o))
= E o O X
% — -02 b
= 0.4r -0.4 %
-06 -
0.2r -0.8 X
-1
o ‘ : ‘
0 1 2 3 4 5 6 -1 -0.5 0 05 1
Frequency (rad/sec) Real
s
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How?

+ Constrained Least-Squares ...
One formulation: Given (0]

u[0]
S 2 ull]
minimize  ||#||7, where @ = _
u[0],ull],...,u[N] :
u[N]
subjectto  x[N] = 0.
Note that )
[n] = A"x[0] + ) " AU Bulk,
k=0

so this problem can be written as

Apgrrs — bi||* subjectto  Creaye = Dy

minimize
Ig

ELEC 3004: Systems

16 May 2017 - 38
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ELEC 3004: Systems

Example 1:

tf2ss

|6 May 2017 - 39

TF 2 SS — Control Canonical Form)

X4

#

Y(s)

U(s)

0
0

bys" + bys" '+ -+ b,_15 + b,
s"H a4+ a8 + oa,

i 0 - 0 x | 0

0 1 e 0 X5 0

+

0 0 1 || x, 0
@, Aoy a Xy | | 1
y = b, — auby | bpy = @, by | i by

+ byu

20



Control Canonical Form as a Block Diagram

by by - ayby by — azby byt = an_1byg by —auly

Modal Form

« CCEF is not the only way to tf2ss
« Partial-fraction expansion of the system

=>» System poles appear as diagonals of Am

» Two issues:
— The elements of matrix maybe complex if the poles are complex
— It is non-diagonal with repeated poles

21



Modal Form

Y(s)  bys" +bys" M e+ b, 5+ b,

UGs) s+ pls +po) (s + po)
S WY PR NN
f _+ 28 5+ p; s+ p,
P"'l w4 0 -“.xl_
X ) X2
rHA‘ L 0 _p”.‘ ‘”,_J

{0

Xy

X2

+ byu

Modal Form Block Diagram

- by
| o +
— e i [= |+
s+py
u 1 X
] &) -
s+ p ’
1
1
1 x”
- - ¢,
S+ Pn

22



Matlab’s tf2ss

Y(s) 25.045+5.008
U(s)  s3+5.03247s2+25.10265+5.008
Get a state space representation of this system

* Given:

» Matlab:
num = [25.04 5.0087;
den = [1 5.03247 25.1026 5.0087;

[A,B,C,D] = tf2ss(num/den) ;
F X 1]
<\'34‘ + 10 |u
I\_;J 0

’ :
s
X3
e
y=1[0 2504 5008)| x, | + [0]u

* Answer: )
5.0325 ~25.1026 -5.008
1 0 0

0 ] 0

Example 2:

Obtaining a Time Response

ELEC 3004: Systems |6 May 2017 - 46
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From SS to Time Response — Impulse Functions

 Given:x = Ax + Bu

« Solution: Ty )
x(t) = e hlx(r,) /EA{I_T)BII(_T)L'J’T

Jiy
— Substituting t, = 0 into this:

x(t) = eMx(0-) + / eM N Bu(r) dr
Jo

— Write the impulse as: u(t) = 8(t)w

— where w is a vector whose components are the magnitudes of r
impulse functions applied at t=0

|
x(1) = eMx(0-) + /0’\("T3B8(T}w dr
)

—

= eMx(0-) + eMBw )

From SS to Time Response — Step Response

* Given: x = Ax + Bu

e Startwithu(t) = k
Where K is a vector whose components are the magnitudes
of r step functions applied at t=0.

x(t) = eMx(0) + eAMTIBK dr

JO

= eMx(0) + (-""’! /(l - AT + A;;- . ‘}u’T Bk
LJo \ Al / J

/ A2 AR \
= eMx(0) + M I - S S0 - BK

2! 3!

— Assume A is non-singular

—

x(1) = eMx(0) + eM[—(A7)(e™ — 1)]Bk
eAx(0) + A(e™ — I)Bk

24



From SS to Time Response — Ramp Response

 Given:x = Ax + Bu
o Start with u(t) = tv

functions applied att =0

1

x(1) = eMx(0) + [ eV Brvdr
= eMx(0) + tf'\‘/ e drBy
o
(1 2A A2, 4N \
AT . V. 2 14 A TS
= eMx(0) + ¢ ‘.\:[ 3l B TR T + ,JBV

— Assume A is non-singular

x(1) = eMx(0) + (A?)(er — I — At)By
= eMx(0) + [AHeM — 1) - A4]By

—

Where v is a vector whose components are magnitudes of ramp

Example: Obtain the Step Response

* Given: Te]_ [ e fau [ [20]

y=1[ “][ } u(t) = 1{r)

H

« Solution:

A (e™

1)
Rl

_1 05 OS At 1 -1
A= s B = Dy =e =L (sl — A
L) j [ o ] (1) [ )]
(sT — A) {\ 2T l : S05] e == a1 - A
I s | s+s+050L1 s+1 | T e 0¥(cos 0.5t — sin0.5¢) ¢ 0% sin 0.5¢ |
<+ 05— 05 0.5 |:> ’ 2¢" 50 0.5 3 050 + sin0.5r) |
s+ 05)2+ 05 (s + 05) + 0.5
+ 05+ 0.5
(s + 0.5) + 0.5 (s + 05) + 0.5
~ Set k=1, x(0)=0:
x(1) = eMx(0) + A'e™ — I)Bk

B
[ 2 L]fose™ otz - sinos) - 05 :> y() = [1 UJ{"“‘J = x, = ¢ 5in 0.5t
L 2 € sin0.5 X,

25



Example Il: Obtain the Step Response
* Given:

u(t) = 1(1)

« Solution:

L

— Assume x(0)=0:

[a()] | 227 —e* et —e™ ﬁ)",\,\(o‘;"l e + L
Lx‘i(x)_l —2e + 27— + 27 || x,(0) l el — e

Example 3:

Command Shaping

ELEC 3004: Systems |6 May 2017 - 52



Command Shaping

A, ===A, Response
""" A, Response
=e—Total Response

= 02
=
5
2 .
0 J o
R i \ 1 N / ) /
\ [ AN ’ N N
\\ [ N II e’ =
"
0.2 | v " ¥ ’ No
\ I} LY
X ¥
Y..2
0.4 g . |
0 0.5 1 1.5 2 25 3

Command Shaping

A| « | £
* A2 From A
pepiraesanensas From Aj

Initial Command Input Shaper Shaped Command

« Zero Vibration (ZV)
1 K
{ﬂ: 14K 1+K [gJ
t, Ty 2
i 0 _4a _ 1-¢
2 K=e
» Zero Vibration and Derivative (ZVD)
1 2K K?
{ﬂ: 1+K)® (1+K)? (1+K)?
i 0 %" T,

27



Next Time...

» Digital Feedback Control

* Review:
— Chapter 2 of FPW

» More Pondering??

28



