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Follow Along Reading:

p— Today

B. P. Lathi > P-1 -D

Signal processing
and linear systems - FPW

1998 — Chapter 4:
TK5102.9.1 38 1998 . . .
Discrete Equivalents to Continuous
Transfer Functions: The Digital Filter

G. Franklin,
J. Powell,

M. Workman
Digital Control "
of Dynamic Systems : FPW

1990

:  — Chapter 5: Design of Digital Control
TJ216.F721990 Systems Using Transform Techniques
Available as
UQ Ebook] e Next Time  wosessesemesessessesetessesseeeseeeereneas 5

Feedback as a Filter
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In This Way Feedback May Be Seen as a Filter
» Ex: Lightly Damped Robot Arm
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PID

» Three basic types of control:
— Proportional
— Integral, and

— Derivative

» The next step up from lead compensation
— Essentially a combination of
proportional and derivative control
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Proportional Control

A discrete implementation of proportional control is identical to continuous;
that is, where the continuous is

the discrete is

u(t) = Kpe(t) = D(s)=K,,

u(k) = Kpe(k) = W

where e(t) is the error signal as shown in Fig 5.2.
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PID Control

D(z) = K, (1 +

Tz
Tr(z - 1)

The user simply has to determine the best values of

o Kp
« Tpand
. TI

Another way to see P || D

 Derivative

D provides:

— High sensitivity
Responds to change
Adds “damping” &
=~ permits larger K
Noise sensitive

— Not used alone
(- its on rate change
of error — by itself it
wouldn’t get there)

- “Diet Coke of control”

* Integral
— Eliminates offsets
(makes regulation ©)
— Leads to Oscillatory
behaviour

— Adds an “order” but
instability

(Makes a 2" order system 3 order)

- “Interesting cake of control”




Integral

+ Integral applies control action based on accumulated output
error

— Almost always found with P control
* Increase dynamic order of signal tracking
— Step disturbance steady-state error goes to zero
— Ramp disturbance steady-state error goes to a constant offset

Let’s try it!

Integral Control

For continuous systems, we integrate the error to arrive at the control,

K, K,

-7 /t“c(f,)dt . D)o

u(t) = T8’

where T7 is called the integral, or reset time. The discrete equivalent is to
sum all previous errors, yielding

KT o T KTz -
e el " Ti(-2) Tz(z«;' )

u(k) = u(k—1)+

Just as for continuous systems, the primary reason for integral control is to
reduce or eliminate steady-state errors, but this typically occurs at the cost
of reduced stability.




Integral: P Control only

 Consider a first order system with a constant load
disturbance, w; (recall as t - o, s —= 0)

=k -
y=k o =y +w
_ k N (s+a)
y_s+k+ar s+k+aW
Steady state gain = a/(k+a) |

+ - €

(never truly goes away) '
u 1
r k —> —> Y
s+a

Now with added integral action

1 1
=k(1+— -y)+
Y < Tl-s>s+a(r n+w

Same dynamics

k(s + 1) s(s +a)

= r I w
Must go to zero Y (s2+ (k+a)s+=~ k(s -|Jri-1)

for constant w!

w
+ - € 1 u 1
r k<1+—> —>Yy
TS s+a

A\ 4




Derivative Control

For continuous systems, derivative or rate control has the form
u(t) = KpTpe(t) = D(s)= K,Tps

where T'p is called the derivative time. Differentiation can be approximated
in the discrete domain as the first difference, that is,

(e(k) — e(k —1)) 1-2z1 z—1
u(k) = K dp———g— = D(z) = KpTp—r— = KpTp——

In many designs, the compensation is a sum of proportional and deriva-
tive control (or PD control). In this case, we have

D(z) = K, (1 + TL;;lZ)

or, equivalently,

Derivative Control [2]

 Similar to the lead compensators
— The difference is that the pole isatz=0

[Whereas the pole has been placed at various locations
along the z-plane real axis for the previous designs. ]

» |n the continuous case:

— pure derivative control represents the ideal situation in that there
is no destabilizing phase lag from the differentiation
— the poleisats = -

* In the discrete case:
- 2z=0
— However this has phase lag because of the necessity to wait for
one cycle in order to compute the first difference




Derivative

 Derivative uses the rate of change of the error signal to
anticipate control action
— Increases system damping (when done right)
— Can be thought of as ‘leading’ the output error, applying
correction predictively
— Almost always found with P control*

*What kind of system do you have if you use D, but don t care
about position? Is it the same as P control in velocity space?

Derivative

« ltis easy to see that PD control simply adds a zero at s = —Tl

with expected results '
— Decreases dynamic order of the system by 1
— Absorbs a pole as k — oo

 Not all roses, though: derivative operators are sensitive to
high-frequency noise

IC(w)l /
1

Bode plot of
a zero

w
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PD for 2" Order Systems

‘ 1
R(s) ‘:?Efs) Kp+tKys > m Y(s)—»

Consider:

Y(S) _ (KP + KDS)
R(s) Js?2+ (B+Kp)s+Kp
Steady-state error: eq; = Ki

Characteristic equation: /s? + (B + Kp)s + Kp = 0
B+Kp

2\ Kp]J
=> It is possible to make e and overshoot small (|) by making
B small (|), K; large 1, Ky such that {:between [0.4 — 0.7]

Damping Ratio: { =

PID — Control for the PID-dly minded

 Proportional-Integral-Derivative control is the control
engineer’s hammer*
— For P,P1,PD, etc. just remove one or more terms

C(s) = <1 + i + Td5>
TiS
R
Proportional I, ]
Integral

Derivative

*Everything is a nail. That’s why it’s called “Bang-Bang” Control ©
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PID

 Collectively, PID provides two zeros plus a pole at the origin
— Zeros provide phase lead
— Pole provides steady-state tracking
— Easy to implement in microprocessors

« Many tools exist for optimally tuning PID
— Zeigler-Nichols
— Cohen-Coon
— Automatic software processes

PID Implementation

 Non-Interacting * Interacting Form
i ] —
— O O~
e D T

C(s) :K<1 +$+5Td> C'(s) :K<1+$>(1+5Td)

l

Note: Different K,T; and Ty
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Operational Amplifier Circuits for Compensators

Type of _ Vols)
Controller Gels) V,(s)
> L _ Ry - - —
" O™, RiCe D ‘r _icue : [
R, .
: | —
I . RyRy(R:Cas + 1)
T RsRi(RiCas)

1 . RyR(RCys + 1)

Lead or lag G, = ]?JE\H(?R;(;T:H’ ‘

— c,
Lead if RiCy > RyC, _{(? ‘T“ Ry
Lagil R,Cy < R,C, N | B g
R, —* )
u r —+
| .\.
L o

» (Yet Another Way to See PID)

Source: Dorf & Bishop, Modern Control Systems, p. 828

PID as Difference Equation

R(z, E(z) D(”) U(z) > G( ) Y(z) >

]

F Y

H(z)

U(z) Tz z—1
E(Z) ID(Z) :Kp+Ki<m>+Kd< T2 >

u(k) = [Kp + K;T + (54)] - e(k) — [KqT1 - e(k — 1) + [K;] - u(k — 1)

13



PID Algorithm (in various domains):

FPW § 5.8.4 [p.224]
» PID Algorithm (in Z-Domain):

D(z) = K, (1 + Th(z - 1)>

T,(z—-1) T Tz

 As Difference equation:

u(tp) = u(tp—1)+Kp [(1+ 5§+ 22) e(t) + (-1 = Zf) e(te1) + Re(tp_2)]
» Pseudocode [Source: Wikipedia]:

previous_error = 0, integral = 0
start:
error = setpoint - measured_value
integral = integral + error*dt
derivative = (error - previous_error)/dt
output = Kp*error + Ki*integral + Kd*derivative
previous_error = error
wait (dt)
goto start

ELEC 3004: Systems 9May 2017 - 28
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Seeing PID — No Free Lunch

» The energy (and sensitivity)
(in this case in “frequency”)

moves around

Serious design

Log magnitude

1.0 ] 15 20
Frequency

« Sensitivity reduction at low frequency unavoidably leads to
sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect — G. Stein, IEEE Control Systems Magazine, 2003.

When Can PID Control Be Used?

When:

* “Industrial processes” such
that the demands on the
performance of the control
are not too high.

— Control authority/actuation
— Fast (clean) sensing
* PI: Most common

— All stable processes can be
controlled by a Pl law
(modest performance)

— First order dynamics

o

PID (Pl + Derivative):

» Second order
(A double integrator cannot
be controlled by PI)

» Speed up response
When time constants differ
in magnitude
(Thermal Systems)

Something More Sophisticated:
* Large time delays

 Oscillatory modes between
inertia and compliances

15



PID Intuition

de(t)
dr

Lo
ut) = K [e(:) = [ e(ds + T,

. P:
— Control action is proportional to control error
— It is necessary to have an error to have a non-zero control signal

— The main function of the integral action is to make sure that the
process output agrees with the set point in steady state

PID Intuition

de(t)
dr

u(l) = K [e(:) ¥ l? [ e(s)ds + Ty,

— The purpose of the derivative action is to improve the closed loop
stability.

— The instability “mechanism” “controlled” here is that because of
the process dynamics it will take some time before a change in
the control variable is noticeable in the process output.

— The action of a controller with proportional and derivative action
may e interpreted as if the control is made proportional to the
predicted process output, where the prediction is made by
extrapolating the error by the tangent to the error curve.

16



PID Intuition

Effects of increasing a parameter independently

Parameter Rise time Overshoot Settling time  Steady-state error ~ Stability
K, l n Minimal change l l
K; ! n n Eliminate l
Improve
Kp Minor change l l .N.O effect / (if Kp
minimal change
small)
PID Intuition: P and PI
18 1.8 —T
16 i i e 16 —t—i— !~ At
14 — —— — 14—~ 7% e =
| lPI
12 < 12| /'\'( =
10 } 1.0 f
y : y
08 = f - 038 ——— =
" rlij)n;il | 4 V4 1 ) [ ==
B ‘ | 9 Proportional ‘ \ ‘ ‘
0.4 I 04 - I ‘ =
02 —t ] | 02 ; Lst
0 i | - 0 . | 1 1 j
00 100.0 200.0 300.0 400.0 00 100.0 200.0 300.0 400.0
Time (sec) Time (sec)




PID Intuition: P and Pl and PID

» Responses of P, PI, and PID control to

8 T |
; |
gl —1- i -
_P| |
L | |
4 |
o i
g ‘A’“ Pl
T M AT
< VY
-2 L1 H
PID
4l il
-5 L
0 1 2 3 4 5 6

Time (msec)

(a) step disturbance input

Amplitude

1.8 ! .
L6 P ! i ;
[ | Pl
1.2 HH o Ama
{ A "
1.0 A\
| & 0P Y VA,
=L :
Y E Y Y I N I
0.6 H—H\——
P
04
OA‘Z S— ‘ e ——— .. S :L N——
0 ‘ '
0 1 2 3 4 5

Time (msec)

(b) step reference input

PID Example

G(s) =

A 3" order plant: b=10, {=0.707, 0,=4

s(s+ b)(s + 2¢w,,)

e

|

Amplitude

- 40% Kp = 370

;‘\."' Quarter amplinsde decay [
K/ \ .
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PID Tuning

ELEC 3004: Systems
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PID Intuition & Tuning

« Tuning — How to get the “magic” values:
— Dominant Pole Design
— Ziegler Nichols Methods
— Pole Placement
— Auto Tuning

 Although PID is common it is often poorly tuned
— The derivative action is frequently switched off!
(Why - it’s sensitive to noise)
— Also lots of “T” will make the system more transitory &
leads to integrator wind-up.

19



Ziegler-Nichols Tuning — Reaction Rate

FPW § 5.8.5 [p.224]

(t)
/

/Slope R= é =reaction rate
K
A

¢
|
|
|
|
|

L=ty —W’{ t

lag

Table 5.2 Ziegler-Nichols tuning
parameters using transient response.

K, Tr Tp
P 1/RL
PI 0.9/RL 3L

PID 1.2/RL 2L 0.5L

Quarter decay ratio

20



Ziegler-Nichols Tuning — Stability Limit Method

FPW § 5.8.5 [p.226]

« Increase K, until the system has continuous oscillations
= K|, : Oscillation Gain for “Ultimate stability”
= Py, : Oscillation Period for “Ultimate stability”

Table 5.3 Ziegler-Nichols tuning
parameters using stability limit.

K, T, Tp
P 0.5K.
PI 045K,  Pu/1.2
PID  0.6K, P./2 P./8

Ziegler-Nichols Tuning / Intuition

Tm Plim)

I/‘\
Nk

g

Re Pliw)

D

Nyquist Plot

wd g

. . 1 .
Cliay,) = K (1 +;(mRT - -—)) r 0.6K,,(1 + 0.467i)

« For a Given Point (%), the effect of increasing P,I and D
in the “s-plane” are shown by the arrows above Nyquist plot
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Extension!:

2"d Order Responses

ELEC 3004: Systems
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Review: Direct Design:
Second Order Digital Systems

Consider the z-transform of a decaying exponential signal:
y(t) = e cos(bt) U(t) (U (t) = unit step)
+ sample:  y(kT) = r* cos(k#) U(kT) with r = =T & 6 = bT

1 z ¥ 1 z
T 2(z—rel?)  2(z—re i)

z(z — rcos#)

* transform: Y (z)

(z —rei?)(z — re—i%)

Im(z)4
* e.g. U is the pulse response of G(z): .
G(z) = z(z — rcosf) \ % ' .
z —relf)(z — re—i9) P .
‘ 4 — peit - P> Re(z)
oles: i /
P { z=re 1° !
x
zeros { 2=0
z=rcosf

22



Response of 2nd order system [1/3]

Responses for varying 7:

r=0.7
s P ] st N
L r< 1 - 6=m/4
+ 0 . e ——p
exponentially decaying T
envelope 03 2 4 6 8 10
sample k
Bor=1 = ' S
054 \
sinusoidal response = 0r
. r=1.0
with 27 /6 samples 05| 1
. P f=m/4
per period 4 . S~ . .
0 2 4 6 8 10
sample k
& > 1 10
o
I s SN
exponentially increasing . / \\\
envelope of T ) r=1.3%4
[ 0=m/4
K 2 2 6 8 10
samplz K
Response of 2nd order system [2/3]
Responses for varying 8: 1
r=0.7
> =0 =05 S =0 |
h T
decaying exponential 0 ‘ ‘ T — |
0 2 4 6 8 10
sample k
. - I+ ‘ ‘ : ‘
> 0= ' 2 \._\.. r=0.7
U ) 05 \\ 0=m/2]
27 /6 = 4 samples ol /\\‘L T
per period -
03 2 2 6 8 10
sample k
B> f=m 1 i
05 * 1
. A\ / .y .
2 samples per period = o N/ e "'*~+-*"""’""‘6““
\ /S r=0.7
051 Vi 1
¥ 0=m
o 2 2 3 8 10
sample k
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Response of 2nd order system [3/3]
Some special cases:

r for 8 =0, Y (z) simplifies to:

Y(z) = —

z—r
— exponentially decaying response

> whent# =0and r=1:

Y(z) = —=
=) z—1
— unit step
> when r =0
Y{iz)=1
— unit pulse
> whenf#=0and -1 <r <0
samples of alternating signs

2"d Order System Response

Response of a 2" order system to increasing levels of damping
2

-— . . .

‘ _—{=0

1.8F : S

0.2

1.6} / :
‘ \ 04

14+ /06—

12F ‘ N

=

0.8
=08
0.6 1
1.0

0.4+ .

0.2
- 1 L 1
00 2 8 10 12
w,t
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Damping and natural freq

uency

z=eSTwheres = —(w, + jw,/1 — {2

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

7777777777777777777777777777777777777777777777

1p  -08 -06
[Adapted from Franklin,

04 02 0 02 04 06 08 10

Powell and Emami-Naeini]

Pole positions in the z-plane

« Poles inside the unit circle
are stable

« Poles outside the unit circle
unstable

« Poles on the unit circle
are oscillatory

* Realpolesat0<z<1
give exponential response

» Higher frequency of
oscillation for larger

» Lower apparent damping
for larer and r

25



2" Order System Specifications

Characterizjng the step response:
> ' +1%
e Lo
0.1
1/ t
* Rise time (10% - 90%): i~ % + Steady state error to unit step: e
i o TC + Phase margin:
* Overshoot:  ™»™ /=3 dppr =~ 100¢
+ Settling time (to 1%0): ¢, = ﬂ Why 4.6? 1t’s -In(1%)
) Cwo —ﬁfw°=QMH@m=4ﬁﬁg=§%

2" Order System Specifications

Characterizing the step response:

_ 1%
e i
L/ \ﬂ_{-"_"—‘:—f_‘:__.f__

* Risetime (10% -> 90%) & Overshoot:
t, M, 2 , o, : Locations of dominant poles
+ Settling time (to 1%):
t, = radius of poles: |:<co1
» Steady state error to unit step:
e, = final value theorem e, = lim {(z = 1) F (2)}




Ex: System Specifications =2 Control Design [1/4]

Design a controller for a system with:
« A continuous transfer function: G (s) =
« Addiscrete ZOH sampler
« Sampling time (T): T,=1s
« Controller:
UL — —O.S’U,k_l —|— 13 (6k - 0.88€k_1)

0.1
s(s+0.1)

The closed loop system is required to have:
* M, <16%
*+ t,<10s

B<1

Ex: System Specifications = Control Design [2/4]

1. (a) Find the pulse transfer function of G(s) plus the ZOH

7 e | u(t } 0] 5y
S s e e i

+
- : G(2) i

G(z)=(1- 271)2{@} =L : 1)2{5%0:0.1}}

e.g. look up Z{a/s*(s +a)} in tables:

(0.1—1+e "Nzt (1—e = ().1<f0-1))
0.1(z —1)2(z — e 01)

. z—1) %
G(z) = ( - ) (
_0.0484(z + 0.9672)

T (2 —1)(2 — 0.9048)

(b) Find the controller transfer function (using = = shift operator):

U(z) (1-0882"")  (x—0.88)
E(z) (1405271 — 77 (240.5)

=D(z)=13

27



Ex: System Specifications =2 Control Design [3/4]

2. Check the steady state error e55 when 7, = unit ramp

ess = lim e, = lim (2 — 1)E(z)
k—o0 z—1

R E U Y B(z) _ ! ;
+7\T D) G(z) > R(z) 1+ D(2)G(z)
- Tz
R(z) =
. . 1z 1 ) T
o =l N T b | - M e nomee
li T 10g- - e
= 111m =
= .0484(= + 0.96T: .
Uy Q080 £ 0.9672) by gy g g
(z —1)(z — 0.9048) g
B 6}
1 — 0.9048 =
= = 0.96 g
0.0484(1 + 0.9672)D(1) 0-96 S S
£ 2
—> ess <1 (as required) ©
O

5
Time (sec)

Ex: System Specifications =2 Control Design [4/4]

3. Step response: overshoot M, < 16% — ¢ > 0.5
settling time ¢, < 10 = |z| < 0.01%* = 0.63
The closed loop poles are the roots of 1 + D(z)G(z) =0, i.e.
4, (2 —0.88) 0.0484(z + 0.9672)
1+13 - =0
+ (z40.5) (z—1)(z — 0.9048)
— 2z = 0.88, —0.050 & 50.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and
r=2031,0=1.73

z = —0.050 £ j0.304 = et — { ]
¢ =0.56

T
1

Output y and input u/10
@

all specs satisfied!

5
Time (sec)
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LTID Stability

Im
Marginally stable

Unstable

M _~y

A

Stabl

d ;
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Characteristic roots Tocation
and the corresponding characteristic modes [1/2]
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Characteristic roots location

and the corresponding characteristic modes [2/2]
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Next Time...

« Digital Feedback Control

e Review:
— Chapter 2 of FPW

» More Pondering??

@/
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