

PID & State-Space

ELEC 3004: Systems: Signals & Controls

Dr. Surya Singh

Lecture 17

elec3004@itee.uq.edu.au

http://robotics.itee.uq.edu.au/~elec3004/

May 9, 2017

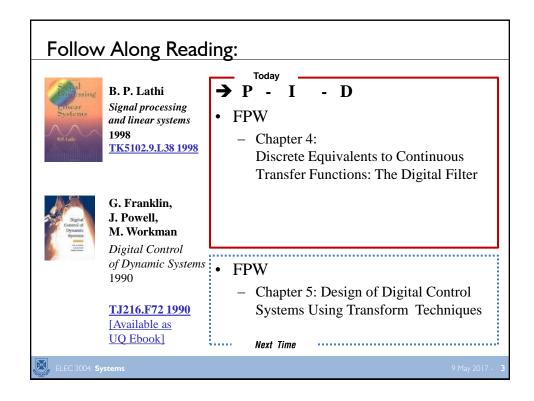
7 School of Information Technology and Electrical Engineering at The University of Queensland

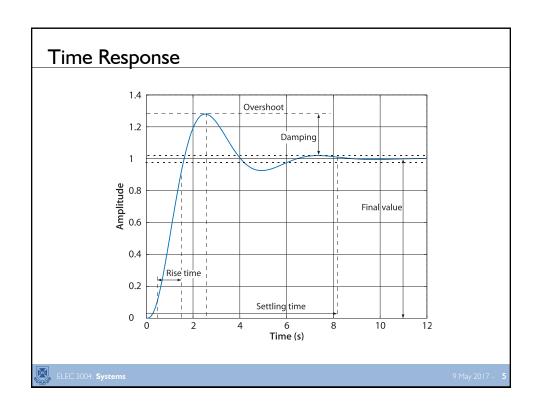
(CC)) BY-NO-SA

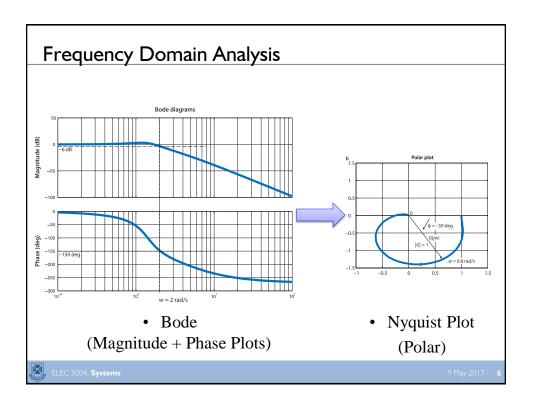
Lecture Schedule:

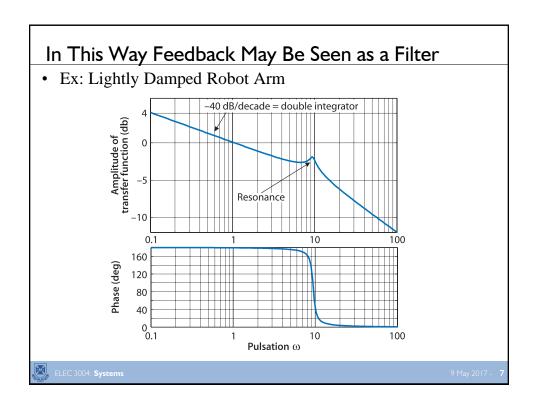
ELEC 3004: Systems

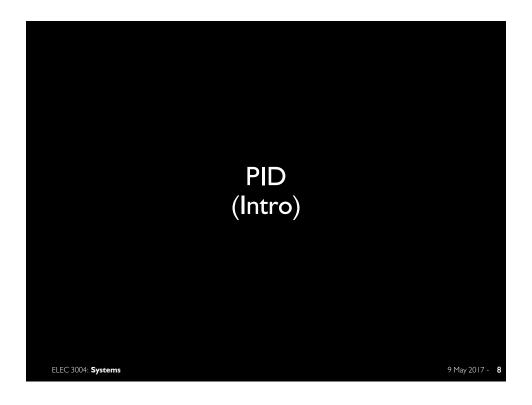
Week	Date	Lecture Title
1	28-Feb	Introduction
	2-Mar	Systems Overview
2	7-Mar	Systems as Maps & Signals as Vectors
	9-Mar	Systems: Linear Differential Systems
3	14-Mar	Sampling Theory & Data Acquisition
	16-Mar	Aliasing & Antialiasing
4	21-Mar	Discrete Time Analysis & Z-Transform
	23-Mar	Second Order LTID (& Convolution Review)
5	28-Mar	Frequency Response
	30-Mar	Filter Analysis
6	4-Apr	Digital Filters (IIR) & Filter Analysis
	6-Apr	Digital Filter (FIR)
7	11-Apr	Digital Windows
/	13-Apr	FFT
	18-Apr	
	20-Apr	Holiday
	25-Apr	
8	27-Apr	Active Filters & Estimation
9	2-May	Introduction to Feedback Control
	4-May	Servoregulation/PID
10	9-May	PID & State-Space
10		State-Space Control
11	16-May	Digital Control Design
	18-May	Stability
12		Digital Control Systems: Shaping the Dynamic Response
12	25-May	Applications in Industry
13	30-May	System Identification & Information Theory
13	1-Jun	Summary and Course Review





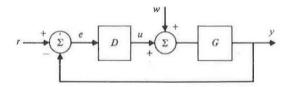






PID

- Three basic types of control:
 - Proportional
 - Integral, and
 - Derivative
- The next step up from lead compensation
 - Essentially a combination of proportional and derivative control



9 May 2017 -

Proportional Control

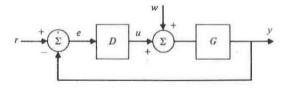
A discrete implementation of proportional control is identical to continuous; that is, where the continuous is

$$u(t) = K_p e(t) \quad \Rightarrow \quad D(s) = K_p,$$

the discrete is

$$u(k) = K_p e(k) \implies D(z) = K_p$$

where e(t) is the error signal as shown in Fig 5.2.



ELEC 3004: Systems

PID Control

$$D(z) = K_p \left(1 + \frac{Tz}{T_I(z-1)} + \frac{T_D(z-1)}{Tz} \right).$$

The user simply has to determine the best values of

- K_p
- T_D and
- T_I

9 May 2017 - 11

Another way to see PID

- Derivative
 - D provides:
 - High sensitivity
 - Responds to change
 - Adds "damping" &∴ permits larger K_P
 - Noise sensitive
 - Not used alone
 (: its on rate change of error – by itself it wouldn't get there)
- → "Diet Coke of control"

- Integral
 - Eliminates offsets (makes regulation ☺)
 - Leads to Oscillatory behaviour
 - Adds an "order" but instability (Makes a 2nd order system 3rd order)

→ "Interesting cake of control"

Integral

- Integral applies control action based on accumulated output error
 - Almost always found with P control
- Increase dynamic order of signal tracking
 - Step disturbance steady-state error goes to zero
 - Ramp disturbance steady-state error goes to a constant offset

Let's try it!



9 May 2017 - 1

Integral Control

For continuous systems, we integrate the error to arrive at the control,

$$u(t) = \frac{K_p}{T_I} \int_{t_o}^t e(t) dt \ \Rightarrow \ D(s) = \frac{K_p}{T_I s},$$

where T_I is called the *integral*, or reset time. The discrete equivalent is to sum all previous errors, yielding

$$u(k) = u(k-1) + \frac{K_p T}{T_I} e(k) \implies D(z) = \frac{K_p T}{T_I (1-z^{-1})} = \frac{K_p T z}{T_I (z-1)}.$$
 (5.60)

Just as for continuous systems, the primary reason for integral control is to reduce or eliminate steady-state errors, but this typically occurs at the cost of reduced stability.

ELEC 3004: Systems

0 M--- 2017 - 14

Integral: P Control only

• Consider a first order system with a constant load disturbance, w; (recall as $t \to \infty$, $s \to 0$)

$$y = k \frac{1}{s+a} (r-y) + w$$

$$(s+a)y = k (r-y) + (s+a)w$$

$$(s+k+a)y = kr + (s+a)w$$

$$y = \frac{k}{s+k+a} r + \frac{(s+a)}{s+k+a} w$$
Steady state gain = a/(k+a)
(never truly goes away)
$$r \xrightarrow{+} \underbrace{\sum_{k=0}^{\infty} e_{k}} w$$

ELEC 3004: Systems

9 May 2017 - 1

Now with added integral action

$$y = k \left(1 + \frac{1}{\tau_i s}\right) \frac{1}{s+a} (r-y) + w$$

$$y = k \frac{s + \tau_i^{-1}}{s} \frac{1}{s+a} (r-y) + w$$
Same dynamics
$$s(s+a)y = k(s+\tau_i^{-1})(r-y) + s(s+a)w$$

$$(s^2 + (k+a)s + \tau_i^{-1})y = k(s+\tau_i^{-1})r + s(s+a)w$$

$$y = \frac{k(s+\tau_i^{-1})}{(s^2 + (k+a)s + \tau_i^{-1})} r + \frac{s(s+a)}{k(s+\tau_i^{-1})} w$$
Must go to zero for constant w !
$$r \longrightarrow \sum_{i=1}^{k} \frac{e}{s+a} + \sum_{i=1}^{k} \frac{1}{s+a} + \sum_{i=1}^{k} \frac{1$$

Derivative Control

For continuous systems, derivative or rate control has the form

$$u(t) = K_p T_D \dot{e}(t) \quad \Rightarrow \quad D(s) = K_p T_D s$$

where T_D is called the *derivative time*. Differentiation can be approximated in the discrete domain as the first difference, that is,

$$u(k) = K_p T_D \frac{(e(k) - e(k-1))}{T} \quad \Rightarrow \quad D(z) = K_p T_D \frac{1-z^{-1}}{T} = K_p T_D \frac{z-1}{Tz}.$$

In many designs, the compensation is a sum of proportional and derivative control (or PD control). In this case, we have

$$D(z) = K_p \left(1 + \frac{T_D(z-1)}{Tz} \right).$$

or, equivalently,

$$D(z) = K \frac{z - \alpha}{z}$$

ELEC 3004: Systems

9 May 2017 - **17**

Derivative Control [2]

- Similar to the lead compensators
 - The difference is that the pole is at z = 0

[Whereas the pole has been placed at various locations along the z-plane real axis for the previous designs.]

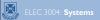
- In the continuous case:
 - pure derivative control represents the ideal situation in that there is no destabilizing phase lag from the differentiation
 - the pole is at $s = -\infty$
- In the discrete case:
 - -z=0
 - However this has phase lag because of the necessity to wait for one cycle in order to compute the first difference

0 M--- 2017 | 10

Derivative

- Derivative uses the rate of change of the error signal to anticipate control action
 - Increases system damping (when done right)
 - Can be thought of as 'leading' the output error, applying correction predictively
 - Almost always found with P control*

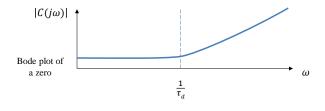
*What kind of system do you have if you use D, but don't care about position? Is it the same as P control in velocity space?



9 May 2017 - 19

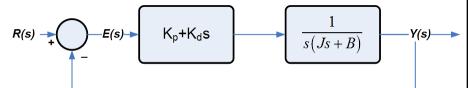
Derivative

- It is easy to see that PD control simply adds a zero at $s = -\frac{1}{\tau_d}$ with expected results
 - Decreases dynamic order of the system by 1
 - Absorbs a pole as $k \to \infty$
- Not all roses, though: derivative operators are sensitive to high-frequency noise



ELEC 3004: Systems

PD for 2nd Order Systems



Consider:

$$\frac{Y(s)}{R(s)} = \frac{(K_P + K_D s)}{J s^2 + (B + K_D) s + K_P}$$

- Steady-state error: $e_{SS} = \frac{B}{K_P}$
- Characteristic equation: $Js^2 + (B + K_D)s + K_P = 0$
- Damping Ratio: $\zeta = \frac{B + K_D}{2\sqrt{K_P J}}$
- → It is possible to make e_{ss} and overshoot small (↓) by making B small (↓), K_P large ↑, K_D such that ζ :between [0.4-0.7]

ELEC 3004: Systems

9 May 2017 - **2**

PID - Control for the PID-dly minded

- Proportional-Integral-Derivative control is the control engineer's hammer*
 - For P,PI,PD, etc. just remove one or more terms

$$C(s) = k \left(1 + \frac{1}{\tau i s} + \tau ds \right)$$
Proportional
Integral
Derivative

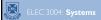
*Everything is a nail. That's why it's called "Bang-Bang" Control ©

ELEC 3004: System

N---2017 **22**

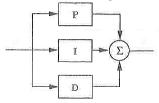
PID

- Collectively, PID provides two zeros plus a pole at the origin
 - Zeros provide phase lead
 - Pole provides steady-state tracking
 - Easy to implement in microprocessors
- Many tools exist for optimally tuning PID
 - Zeigler-Nichols
 - Cohen-Coon
 - Automatic software processes



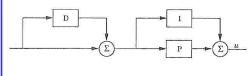
PID Implementation

• Non-Interacting



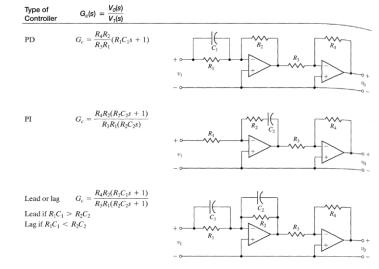
$$C(s) = K\left(1 + \frac{1}{sT_i} + sT_d\right) \quad C'(s) = K\left(1 + \frac{1}{sT_i}\right)$$

Interacting Form



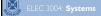
$$C'(s) = K\left(1 + \frac{1}{sT_i}\right)(1 + sT_d)$$

• Note: Different K, T_i and T_d



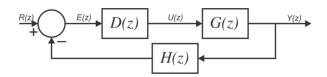
• (Yet Another Way to See PID)

Source: Dorf & Bishop, Modern Control Systems, p. 828



9 May 2017 - 2

PID as Difference Equation



$$\frac{U(z)}{E(z)} = D(z) = K_p + K_i \left(\frac{Tz}{z-1}\right) + K_d \left(\frac{z-1}{Tz}\right)$$

$$u(k) = \left[K_p + K_i T + \left(\frac{K_d}{T}\right)\right] \cdot e(k) - \left[K_d T\right] \cdot e(k-1) + \left[K_i\right] \cdot u(k-1)$$

ELEC 3004: Systems

PID Algorithm (in various domains):

FPW § 5.8.4 [p.224]

• PID Algorithm (in Z-Domain):

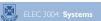
$$D(z) = K_p \left(1 + \frac{Tz}{T_I(z-1)} + \frac{T_D(z-1)}{Tz} \right)$$

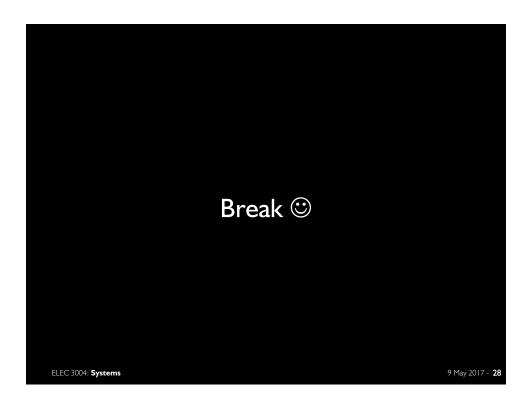
• As Difference equation:

$$u(t_k) = u(t_{k-1}) + K_p \left[\left(1 + \frac{\Delta t}{T_i} + \frac{T_d}{\Delta t} \right) e(t_k) + \left(-1 - \frac{2T_d}{\Delta t} \right) e(t_{k-1}) + \frac{T_d}{\Delta t} e(t_{k-2}) \right]$$

• Pseudocode [Source: Wikipedia]:

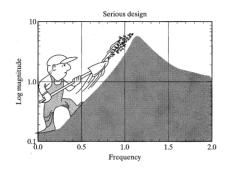
```
previous_error = 0, integral = 0
start:
    error = setpoint - measured_value
    integral = integral + error*dt
    derivative = (error - previous_error)/dt
    output = Kp*error + Ki*integral + Kd*derivative
    previous_error = error
    wait(dt)
    goto start
```





Seeing PID – No Free Lunch

• The energy (and sensitivity) moves around (in this case in "frequency")



• Sensitivity reduction at low frequency unavoidably leads to sensitivity increase at higher frequencies.

Source: Gunter Stein's interpretation of the water bed effect - G. Stein, IEEE Control Systems Magazine, 2003

9 May 2017 - **2**9

When Can PID Control Be Used?

When:

- "Industrial processes" such that the demands on the performance of the control are not too high.
 - Control authority/actuation
 - Fast (clean) sensing
- PI: Most common
 - All stable processes can be controlled by a PI law (modest performance)
 - First order dynamics

PID (PI + Derivative):

- Second order

 (A double integrator cannot be controlled by PI)
- Speed up response
 When time constants differ in magnitude
 (Thermal Systems)

Something More Sophisticated:

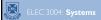
- · Large time delays
- Oscillatory modes between inertia and compliances

N---2017 **20**

PID Intuition

$$u(t) = K \left[e(t) + \frac{1}{T_i} \int e(s) \, ds + T_d \, \frac{de(t)}{dt} \right]$$

- P:
 - Control action is proportional to control error
 - It is necessary to have an error to have a non-zero control signal
- I:
 - The main function of the integral action is to make sure that the process output agrees with the set point in steady state



0 May 2017 2

PID Intuition

$$u(t) = K \left[e(t) + \frac{1}{T_i} \int e(s) \, ds + T_d \frac{de(t)}{dt} \right]$$

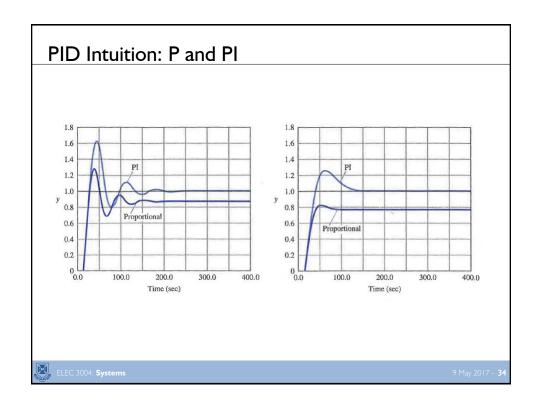
- P:
- I:
- D:
 - The purpose of the derivative action is to improve the closed loop stability.
 - The instability "mechanism" "controlled" here is that because of the process dynamics it will take some time before a change in the control variable is noticeable in the process output.
 - The action of a controller with proportional and derivative action
 may e interpreted as if the control is made proportional to the
 predicted process output, where the prediction is made by
 extrapolating the error by the tangent to the error curve.

ELEC 3004: Systems

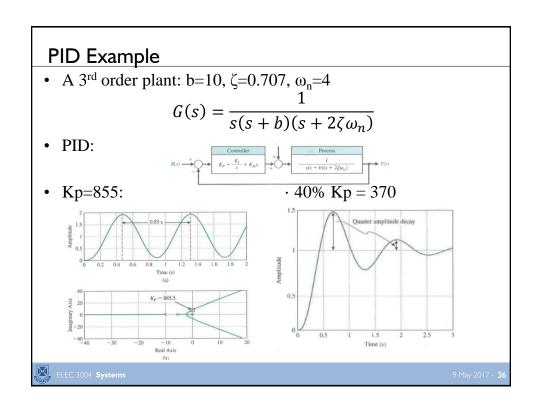
0 M--- 2017 - **22**

PID Intuition Effects of increasing a parameter independently Rise time Overshoot Stability Parameter Settling time Steady-state error ⇑ Minimal change K_p K_I ⇑ Eliminate Improve No effect / K_D Minor change \downarrow \downarrow (if K_D minimal change small)

ELEC 3004: Systems



PID Intuition: P and PI and PID • Responses of P, PI, and PID control to | Sample | Section |

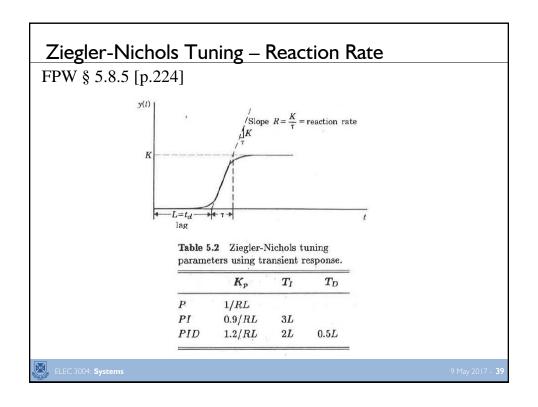


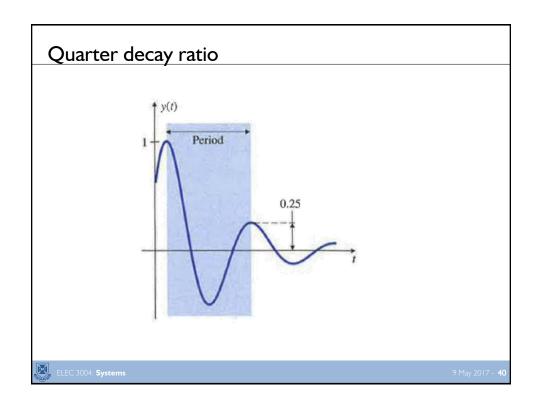
PID Tuning ELEC 3004: Systems 9 May 2017 - 37

PID Intuition & Tuning

- Tuning How to get the "magic" values:
 - Dominant Pole Design
 - Ziegler Nichols Methods
 - Pole Placement
 - Auto Tuning
- Although PID is common it is often poorly tuned
 - The derivative action is frequently switched off!(Why ∵ it's sensitive to noise)
 - Also lots of "I" will make the system more transitory & leads to integrator wind-up.

ELEC 3004: Systems





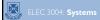
Ziegler-Nichols Tuning – Stability Limit Method

FPW § 5.8.5 [p.226]

- Increase K_P until the system has continuous oscillations
 - \equiv K_U: Oscillation Gain for "Ultimate stability"
 - \equiv P_U: Oscillation Period for "Ultimate stability"

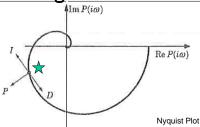
Table 5.3 Ziegler-Nichols tuning parameters using stability limit.

	**	ØD.	m
	K_p	T_I	$T_{\mathcal{D}}$
\overline{P}	$0.5K_u$		
PI	$0.45K_u$	$P_{u}/1.2$	
PID	$0.6K_u$	$P_u/2$	$P_u/8$



9 May 2017 - **4**

Ziegler-Nichols Tuning / Intuition

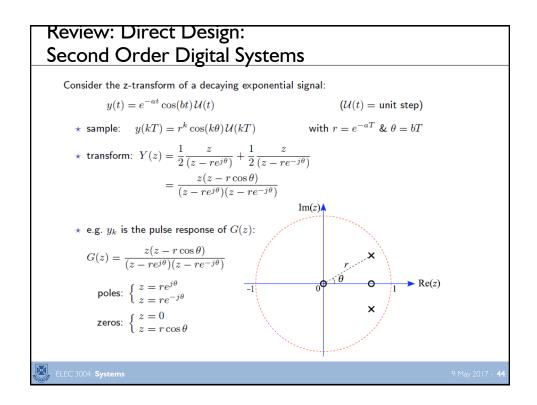


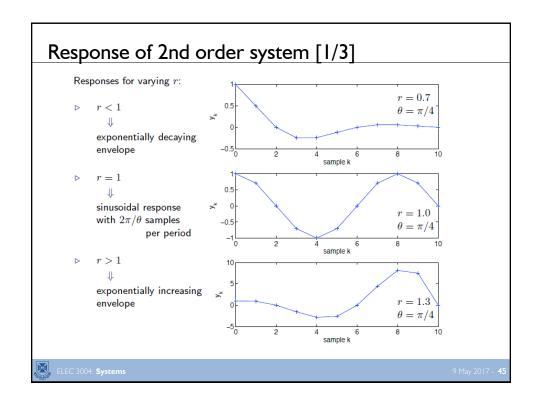
$$C(i\omega_u) = K\left(1 + i\left(\omega_u T_d - \frac{1}{\omega_u T_i}\right)\right) \approx 0.6K_u(1 + 0.467i)$$

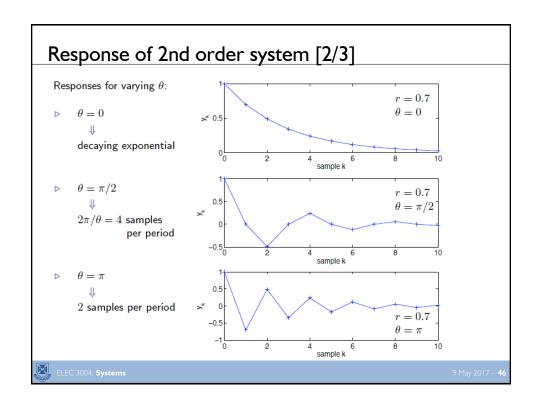
• For a Given Point (★), the effect of increasing P,I and D in the "s-plane" are shown by the arrows above Nyquist plot

N---2017 **42**

Extension!: 2nd Order Responses







Response of 2nd order system [3/3]

Some special cases:

ho for $\theta=0$, Y(z) simplifies to:

$$Y(z) = \frac{z}{z - r}$$

- ⇒ exponentially decaying response
- \triangleright when $\theta = 0$ and r = 1:

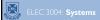
$$Y(z) = \frac{z}{z - 1}$$

- \implies unit step
- \triangleright when r=0:

$$Y(z) = 1$$

- \implies unit pulse
- \triangleright when $\theta = 0$ and -1 < r < 0:

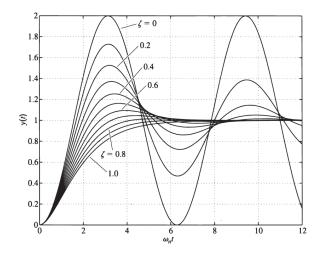
samples of alternating signs



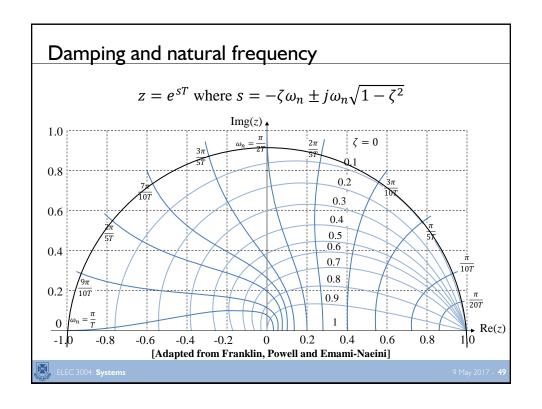
9 May 2017 - 4

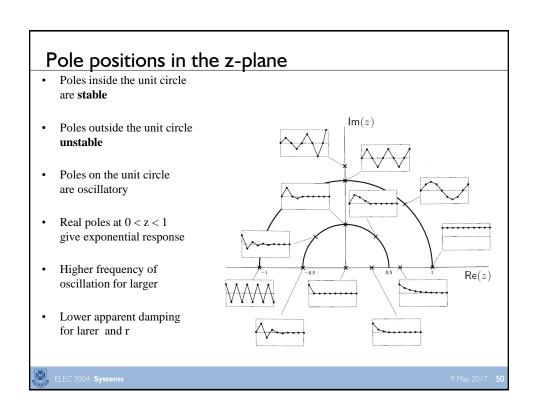
2nd Order System Response

• Response of a 2nd order system to increasing levels of damping:



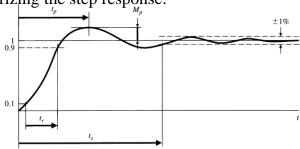
ELEC 3004: Systems





2nd Order System Specifications

Characterizing the step response:



- Rise time (10% \rightarrow 90%): $t_r \approx \frac{1.8}{\omega_0}$
 - $M_p \approx \frac{e^{-\pi\zeta}}{\sqrt{2\pi}}$ Phase margin:
- Overshoot: $M_p \approx \frac{\epsilon}{\sqrt{1-\zeta^2}}$
- $\phi_{PM}pprox 100\zeta$

Steady state error to unit step: e_{ss}

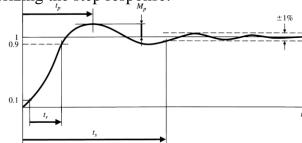
• Settling time (<u>to 1%</u>): $t_s = \frac{4.6}{\zeta \omega_0}$ Why 4.6? It's -ln(1%) $t_s = \frac{4.6}{\zeta \omega_0}$

ELEC 3004: System

9 May 2017 - **5**

2nd Order System Specifications

Characterizing the step response:



• Rise time (10% \rightarrow 90%) & Overshoot:

 $t_r, M_p \rightarrow \zeta, \omega_0$: Locations of dominant poles

• Settling time (to 1%):

 $t_s \rightarrow \text{radius of poles: } |z| < 0.01^{\frac{T}{\ell_s}}$

• Steady state error to unit step:

 $e_{ss} \rightarrow \text{final value theorem} \quad e_{ss} = \lim_{z \to 1} \{(z-1) F(z)\}$

Ex: System Specifications → Control Design [1/4]

Design a controller for a system with:

- A continuous transfer function: $G(s) = \frac{0.1}{s(s+0.1)}$
- A discrete ZOH sampler
- Sampling time (T_s) : $T_s = 1s$
- Controller:

$$u_k = -0.5u_{k-1} + 13(e_k - 0.88e_{k-1})$$

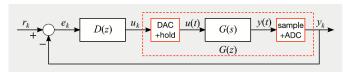
The closed loop system is required to have:

- $M_p < 16\%$
- $t_s < 10 s$
- $e_{ss} < 1$

9 May 2017 - **5**

Ex: System Specifications → Control Design [2/4]

1. (a) Find the pulse transfer function of G(s) plus the ZOH



$$G(z) = (1-z^{-1}) \mathcal{Z} \Big\{ \frac{G(s)}{s} \Big\} = \frac{(z-1)}{z} \mathcal{Z} \Big\{ \frac{0.1}{s^2(s+0.1)} \Big\}$$

e.g. look up $\mathcal{Z}\{a/s^2(s+a)\}$ in tables:

$$\begin{split} G(z) &= \frac{(z-1)}{z} \, \frac{z \Big((0.1-1+e^{-0.1})z + (1-e^{-0.1}-0.1e^{-0.1}) \Big)}{0.1(z-1)^2(z-e^{-0.1})} \\ &= \frac{0.0484(z+0.9672)}{(z-1)(z-0.9048)} \end{split}$$

(b) Find the controller transfer function (using $z={\rm shift\ operator})$:

$$\frac{U(z)}{E(z)} = D(z) = 13 \frac{(1 - 0.88z^{-1})}{(1 + 0.5z^{-1})} = 13 \frac{(z - 0.88)}{(z + 0.5)}$$

Ex: System Specifications → Control Design [3/4]

2. Check the steady state error e_{ss} when $r_k =$ unit ramp

$$e_{ss} = \lim_{k \to \infty} e_k = \lim_{z \to 1} (z - 1) E(z)$$

$$\frac{E(z)}{R(z)} = \frac{1}{1 + D(z)G(z)}$$

$$R(z) = \frac{Tz}{(z - 1)^2}$$

$$e_{ss} = \lim_{z \to 1} \left\{ (z - 1) \frac{Tz}{(z - 1)^2} \frac{1}{1 + D(z)G(z)} \right\} = \lim_{z \to 1} \frac{T}{(z - 1)D(z)G(z)}$$

$$= \lim_{z \to 1} \frac{T}{(z - 1) \frac{0.0484(z + 0.9672)}{(z - 1)(z - 0.9048)}D(1)} \stackrel{10}{\underset{0}{\downarrow_0}}$$

$$= \frac{1 - 0.9048}{0.0484(1 + 0.9672)D(1)} = 0.96$$

$$\implies e_{ss} < 1 \quad \text{(as required)}$$

ELEC 3004: Systems

Ex: System Specifications → Control Design [4/4]

3. Step response: overshoot $M_p < 16\% \implies \zeta > 0.5$

settling time
$$t_s < 10 \implies |z| < 0.01^{1/10} = 0.63$$

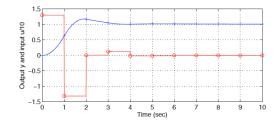
The closed loop poles are the roots of 1 + D(z)G(z) = 0, i.e.

$$1 + 13\frac{(z - 0.88)}{(z + 0.5)}\frac{0.0484(z + 0.9672)}{(z - 1)(z - 0.9048)} = 0$$

$$\implies$$
 $z = 0.88, -0.050 \pm j0.304$

But the pole at z=0.88 is cancelled by controller zero at z=0.88, and

$$z = -0.050 \pm j0.304 = re^{\pm j\theta} \implies \begin{cases} r = 0.31, \ \theta = 1.73 \\ \zeta = 0.56 \end{cases}$$



all specs satisfied!

ELEC 3004: Systems

