

DTFT \& FFTs

ELEC 3004: Systems: Signals \& Controls
Dr. Surya Singh
Lecture 13
elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/
April 11, 2017

Lecture Schedule:

Week	Date	Lecture Title
1	$28-\mathrm{Feb}$ I	Introduction
	2-MarS	Systems Overview
2	7-MarS	Systems as Maps \& Signals as Vectors
	9-MarS	Systems: Linear Differential Systems
3	14-MarS	Sampling Theory \& Data Acquisition
	16-Mar	Aliasing \& Antialiasing
4	21-MarD	Discrete Time Analysis \& Z-Transform
	23-MarS	Second Order LTID (\& Convolution Review)
5	28-MarF	Frequency Response
	30-MarF	Filter Analysis
6	4-AprD	Digital Filters (IIR) \& Filter Analysis
	6-AprD	Digital Filter (FIR)
7	11-AprD	Digital Windows
	13-Apr	FFT
	18 -Apr	Holiday
	$20-\mathrm{Apr}$	
	$25-\mathrm{Apr}$	
8	27-AprA	Active Filters \& Estimation
9	2-May	Introduction to Feedback Control
	4-May	Servoregulation/PID
10	9-May I	Introduction to (Digital) Control
	11-May D	Digitial Control
11	16-May D	Digital Control Design
	18-May	Stability
12	23-May D	Digital Control Systems: Shaping the Dynamic Response
	25-May	Applications in Industry
13	30-May	System Identification \& Information Theory
	1-JunS	Summary and Course Review

(1)

ELEC 3004: Systems

Follow Along Reading:

	B. P. Lathi
	Signal processing and linear systems
	1998
	TK5102.9.L38 1998

G. Franklin,
J. Powell,
M. Workman

Digital Control
of Dynamic Systems 1990

TJ216.F72 1990
[Available as
UQ Ebook]

- Chapter 10
(Discrete-Time System Analysis Using the z-Transform)
- § 10.3 Properties of DTFT
- § 10.5 Discrete-Time Linear System analysis by DTFT
- § 10.7 Generalization of DTFT to the \mathcal{Z}-Transform

```
- FPW
```

- Chapter 2: Linear, Discrete, Dynamic-Systems Analysis

ELEC3004 is

$$
-e^{\pi i}
$$

The Complex Plane Properties

- $\mathrm{z}=(\mathrm{a}+\mathrm{bi})$
- $z+\bar{z}=2 a$
- $z \bar{z}=(a+b i)(a-b i)=a^{2}+b^{2}$

The Complex Plane Properties

- $\mathrm{z}=(\mathrm{a}+\mathrm{bi})$ is also
- $z=r \cos \theta+i r \sin \theta$

The nth power of $z=r(\cos \theta+i \sin \theta)$ is $\quad z^{n}=r^{n}(\cos n \theta+i \sin n \theta)$.

The Complex Plane Properties

Figure 10.3 (a) Multiplying $e^{i \theta}$ times $e^{i \theta^{\prime}}$. (b) The nth power of $e^{2 \pi i / n}$ is $e^{2 \pi i}=1$.

The Fourier Transform

- The continuous-time Fourier Transform

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) \exp (-j \omega t) d t
$$

- What happens if we sample $\left.x(t)\right|_{t=n \Delta t}=x_{\mathrm{c}}(t)$?
- Represent $x_{\mathrm{c}}(t)$ as sum of weighted impulses

$$
\begin{aligned}
& x_{c}(t)=\sum_{n=-\infty}^{\infty} x(n \Delta t) \delta(t-n \Delta t) \\
& X_{c}(\omega)=\int_{-\infty}^{\infty}\left[\sum_{n=-\infty}^{\infty} x(n \Delta t) \delta(t-n \Delta t)\right] \exp (-j \omega t) d t
\end{aligned}
$$

Discrete-time Fourier Transform

- Changing order of integration \& summation
- and the simplifying (multiplication by impulse) gives

$$
\begin{aligned}
X_{c}(\omega)= & \sum_{n=-\infty}^{\infty} x(n \Delta t)\left[\int_{-\infty}^{\infty} \delta(t-n \Delta t) \exp (-j \omega t) d t\right] \\
& =\sum_{n=-\infty}^{\infty} x(n \Delta t) \exp (-j \omega n \Delta t)
\end{aligned}
$$

- This is known as the DTFT
- Requires an infinite number of samples $x(n \Delta t)$
- discrete in time
- continuous and periodic in frequency

DTFT of Finite Data Samples

- Assume only N samples of $x(n \Delta t)$
- from $n=\{0, \mathrm{~N}-1\}$
- Therefore, can only approximate $X_{c}(w)$
$\hat{X}_{c}(\omega)=\sum_{n=0}^{N-1} x(n \Delta t) \exp (-j \omega n \Delta t)$
- How good an estimate is this?
- Finite samples are same as infinite sequence multiplied by a rectangular time domain

$$
\begin{aligned}
\hat{x}(n \Delta t)=x(n \Delta t) \cdot \Pi\left(\frac{t}{T}\right), \quad \text { where } T & =N \Delta t \\
\text { Where rect }(\mathrm{t})= & \Pi(t)=u\left(t+\frac{T}{2}\right)-u\left(t-\frac{T}{2}\right)
\end{aligned}
$$

Window Effects

- Multiplication in time with rectangular window
- Equivalent to convolution in frequency
- with 'sinc' function

$$
\hat{X}_{c}(\omega)=\frac{1}{2 \pi} X_{c}(\omega) * T \operatorname{sinc}\left(\frac{T \omega}{2 \pi}\right)
$$

- In general, with arbitrary window function

$$
\begin{aligned}
& \hat{x}_{c}(t)=x_{c}(t) \cdot w_{T}(t) \\
& \hat{X}_{c}(\omega)=\frac{1}{2 \pi} X_{c}(\omega) * W_{T}(\omega)
\end{aligned}
$$

This is exactly same effect we saw in FIR filter design

ELEC 3004: Systems

Reducing Window Effects

- We cannot avoid using a window function
- as we must use a finite length of data
- Aim: to reduce window effect

1. By choosing suitable window function

- Hanning, Hamming, Blackman, Kaiser etc

2. Increase number of samples (N)

- reduces window effect (larger window)
- increases resolution (No. samples)
- Assumes signal is 'stationary' within sample window
- Not true for most non-deterministic signals
- e.g., speech, images etc

sinewave
frequency 20 Hz
rectangular window (1 second long)

Note difficulty in detecting the single sinewave frequency present in time domain due to 'smearing.'

DTFT and the DFT

- Fourier transform, $\hat{X}_{c}(w)$, of sampled data is
- continuous in frequency, range $\left\{0, w_{s}\right\}$
- and periodic (w_{s})
- known as DTFT
- If calculating on digital computer
- then only calculate $\hat{X}_{c}(w)$ at discrete frequencies
- normally equally spaced over $\left\{0, w_{s}\right\}$
- normally N samples, i.e., same as in time domain
- i.e, samples Δw apart

Can reduce Δw by increasing N

$$
\Delta \omega=\frac{2 \pi}{N \Delta t}
$$

The DFT

- Discrete Fourier Transform (DFT)
- samples of DTFT, $\left.X_{c}^{\wedge}(w)\right|_{w=k \Delta w}$

$$
\hat{X}(k \Delta \omega)=X[k]=\sum_{n=0}^{N-1} x[n] \exp \left(\frac{-j n k 2 \pi}{N}\right)
$$

where $0 \leq n, k \leq N-1$

- Interpretation:
- N equally spaced samples of $\left.x(t)\right|_{t=n \Delta t}$
- Calculates N equally spaced samples of $\left.X(w)\right|_{w=k \Delta w}$
- k often referred to a frequency 'bin': $X[k]=X\left(w_{k}\right)$

Inverse DFT

- Relates frequency domain samples to
- time domain samples
$x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \exp \left(\frac{j n k 2 \pi}{N}\right)$
- Note, differences to forward DFT
- $1 / \mathrm{N}$ scaling and sign change on exponential
- DFT \& IDFT implemented with same algorithm
- i.e., Fast Fourier Transform (FFT)
- Require both DFT and IDFT to implement (fast)
- convolution as multiplication in frequency domain

Note, $1 / \mathrm{N}$ scaling can be on DFT only OR as $1 / \mathrm{sqrt}(\mathrm{N})$ on both DFT and IDFT

Fourier Transforms

Transform	Time Domain	Frequency Domain
Fourier Series (FS)	 Periodic	Discrete
Fourier Transform (FT)	Continuous	Continuous
Discrete-time Fourier Transform (DTFT)	Discrete	 Periodic
Discrete Fourier Transform (DFT)	Discrete \& Periodic	Discrete \& Periodic

Properties of the DFT

if...

- $x[n]$ is real
- $x[n]$ is real and even
- $x[n]$ is real and odd

Then...

- $X[-k]=X[k]^{*}$
$-\mathfrak{R}\{X[k]\}$ is even
- $\mathfrak{I}\{X[k]\}$ is odd
$-|X[k]|$ is even
$-\angle X[k]$ is odd
- $X[k]$ is real and even
- i.e., zero phase
- $X[k]$ is imaginary and odd

Note: DC at $k=0 \& x[n]=x[n+N] \& X[k]=X[k+N]$

Properties of the DFT

- Periodic in frequency
- period w_{s} i.e., the sampling frequency, or
- period 2π (in normalised frequency)
- Repeats after N samples
$-x[N+k]=X[k]$
- Mirror image (even) symmetry at $w_{s} / 2$, i.e., π
$-x[N-r]=X *[r]$, where $r<N / 2$
- Shift property
$-x[n-m]=\exp (-j k m 2 \pi / N) X[k]$
- i.e., $|X[k]|$ stays the same as input is shifted
- only (phase) $\angle X[k]$ changes

 Note: all spectrums shifted to show $-w_{s} / 2$ to $+w_{s} / 2$, i.e., DC at $k=4$

Analogies for the DFT

- Analogy for DFT is a Filterbank
- Set of N FIR bandpass filters
- with centre frequencies $k w_{s} / N$
- k in range $\{0, N-1\}$
- often called 'frequency bins'
- e.g., 8 point DFT
-8 bandpass filters (bins), spaced $\Delta w=w_{s} / 8$ apart
- Bandwidth of each filter $\Delta w / 2$ therefore
- output can be down-sampled by factor of 8
- i.e., one sample, $x[k]$, per filter output (frequency bin)

Filterbank Analogy of DFT

Filterbank Analogy of DFT

DFT Resolution

- Resolution is ability to distinguish
- 2 (or more) closely spaced sinusoids
- Minimum resolution of DFT given by
$-\Delta w=w_{s} / N=2 \pi / \mathrm{N} \Delta t$
- defined by sampling frequency, w_{s}
- and number of samples, N
- Minimum resolution occurs when
- integer number of complete cycles of input signal
- in the N samples analysed
- This is a 'best case' scenario
- 'sinc' smearing always zero in adjacent frequency bins

DFT Resolution: Example

Consider two sinusoids: frequencies $3 w_{s} / 16$ and $5 w_{s} / 16$

DFT Resolution: Example

16 point DFT: results in samples of DTFT. As sinusoids are
$|\mathrm{X}(w)|^{2} \uparrow \quad$ at $n w_{s} / N$ (in middle of bins) only 1 non-zero sample each.

bin resolution

Leakage Effects

- In general, we can not capture
- integer number of cycles of input
- i.e., input will not be at bin frequencies $n w_{s} / N$
- therefore, actual DFT resolution $<\Delta w$
- This is due to energy 'leakage'
- between adjacent frequency bins
- Leakage due to finite data length
- i.e., the 'window' effect
- which 'smears' $X(w)$-> $X[k]$
- aim: to minimise window effect
- using other than rectangular window

DFT Resolution: Example

Consider two sinusoids: frequencies $3.1 w_{s} / 16$ and $5.1 w_{s} / 16$ sample length $\mathrm{T}=16 \Delta t$
$|X(w)|^{2}$.

DFT Resolution: Example

16 point DFT: Sinusoids no longer at $n w_{s} / N$
$|X(w)|^{2} \uparrow \quad$ (not in middle of bins) therefore many non-zero samples.

Reducing Leakage with Window Functions: Example

- Consider, two sinusoids,

1. $\sin \left(10.5 w_{s} / N\right)$: amplitude 1
2. $0.01 \sin \left(16.5 w_{s} / N\right)$: amplitude 0.01

- i.e., significantly smaller (-40 dB)
- This produces worst case leakage as
- both sinusoids fall at edge of frequency bins
- leakage due to large sinusoid $>$ amplitude of smaller sinusoid (will be 'masked')
- Leakage can be reduced by using
- non-rectangular window (Hanning/Hamming)
- as used in FIR filter design

Window Functions

Window	-3 dB bandwidth	Loss (dB)	Peak sidelobe (dB)	Sidelobe roll off $(\mathrm{dB} / o c t a v e)$
Rectangular	$0.89 / N \Delta t$	0	-13	-6
Hanning	$1.4 / N \Delta t$	4	-32	-18
Hamming	$1.3 / N \Delta t$	2.7	-43	-6
Dolph- Chebyshev	$1.44 / N \Delta t$	3.2	-60	0

Note, trade-off between increased sidelobe attenuation And increased 3dB (peak) bandwidth

[^0]
Limitations of Fourier Analysis

High - low

Note: These signals differ in Phase. PSD is zero phase as $F\left\{\phi_{x x}(k)\right\}$ real \& even 5in

Mixed
(1) ELEC 3004: Systems

Spectrum Analysis of Non-Stationary Signals

- Spectrum of non-deterministic Signal $X(w)$
- is only valid if $x(t)$ is stationary
- i.e., statistics of $x(t)$ do not change over time
- Real-world signals often only stationary over a short time period of time
- e.g., speech: assumed stationary over $\mathrm{t}<60 \mathrm{~ms}$
- Therefore, take 'short-time' DFT of signal
- i.e., take multiple DFT's over stationary periods
- plot how frequency components change over time
- for speech the plot of time V frequency V power
- is called a Spectrogram

DTFT Meets Linear Algebra

FFT

Fourier Matrix

The DFT

$$
X[k]=\sum_{n=0}^{N-1} x[n] \exp \left(\frac{-j 2 \pi n k}{N}\right)
$$

- Sample number n where $0 \leq n<N-1$
- time 0 to $N \Delta t$
- Frequency sample (bin) number k where $0 \leq k<N-1$
- frequency 0 to $\omega_{s}\left(\omega_{s}=\frac{2 \pi}{\Delta t}\right)$
- Discrete in both time $x[n]$ and frequency $X[k]$
- Periodic in both time and frequency (due to sampling)
- Remember: $H(w)=\left.H(z)\right|_{z}=\exp (j \omega t)$ i.e., DFT samples around unit circle in the z-plane

2D DFT

$$
\begin{aligned}
\mathcal{F}(u, v) & =\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x+v y) / N} \\
f(x, y) & =\frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \mathcal{F}(u, v) e^{j 2 \pi(u x+v y) / N}
\end{aligned}
$$

Naïve DFT in Matlab

```
%% function X : MyNiaveDFT(x)
% ELEC3004 - Lecture 13
function X = MyNiaveDFT(x)
% Niave/direct implementation of the Discrete Fourier Transform (DFT)
% Calculate N samples of the DTFT, i.e., same number of samples
N=length(x);
% Initialize (complex) X to zero
X=[complex(zeros(size(x)),zeros(size(x)))];
for n = 0:N-1
    for k=0:N-1
            % Calculate each sample of OFT uSIng each sample of input.
            % Note: Matlab indexes vectors from 1 to N,
            % whilst DFT is defined from from 0 to (N-1)
            x(k+1) = X (k+1) + x(n+1)*exp(-i*n*k*2*pi/N);
        end
    end
```

间
ELEC 3004: Systems

Computational Complexity

- Each frequency sample X[k]
- Requires N complex multiply accumulate (MAC) operations
- \therefore for N frequency samples
- There are N^{2} complex MAC
- Example:
- 8-point DFT requires 64 MAC
- 64-point DFT requires 4,096 MAC
- 256-point DFT requires $65,536 \mathrm{MAC}$
- 1024-point DFT requires $1,048,576 \mathrm{MAC}$
- i.e., number of MACs gets very large, very quickly!

DFT Notation

$$
X[k]=\sum_{n=0}^{N-1} x[n] \cdot W_{N}^{n k}
$$

Where: $\quad W_{N}^{n k}=\exp \left(\frac{-j 2 \pi n k}{N}\right)$
$W_{N}{ }^{n k}$ are called " N th roots of unity"
e.g., $N=8$:
$W_{8}{ }^{0}=\exp (0)=1$;
$W_{8}{ }^{1}=\exp (-j \pi / 4)=\cos (\pi / 4)-j \sin (\pi / 4)=0.7-j 0.7$;
$W_{8}{ }^{2}=-j ; W_{8}{ }^{3}=-0.7-j 0.7 ; W_{8}{ }^{4}=-1 ;$ etc

$\mathrm{N}^{\text {th }}$ Roots of Unity

All $2 \pi / \mathrm{N}$ apart

DFT Expansion

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] \cdot W_{N}^{n k} \\
& X(k=0) \quad=x(0)+x(1)+\ldots+x(N-1) \\
& X(k=1)=x(0)+x(1) W_{N}^{1}+\cdots+x(N-1) W_{N}^{N-1} \\
& X(k=2)=x(0)+x(1) W_{N}^{2}+\cdots+x(N-1) W_{N}^{N-2} \\
& \vdots \quad \vdots \quad \vdots \quad \vdots \\
& X(k=N-1)=x(0)+x(1) W_{N}^{N-1}+\cdots+x(N-1) W_{N}^{1}
\end{aligned}
$$

Remember $W_{\mathrm{N}}{ }^{0}=1$

DFT Matrix Formulation

DFT expansion can also be written as a matrix operation:
$\left[\begin{array}{c}X(0) \\ X(1) \\ X(2) \\ \cdot \\ X(N-1)\end{array}\right]=\left[\begin{array}{ccccc}1 & 1 & 1 & \cdot & 1 \\ 1 & W_{N}^{1} & W_{N}^{2} & \cdot & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdot & W_{N}^{N-2} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & W_{N}^{N-1} & W_{N}^{N-2} & \cdot & W_{N}^{1}\end{array}\right] \cdot\left[\begin{array}{c}x(0) \\ x(1) \\ x(2) \\ \cdot \\ x(N-1)\end{array}\right]$

DFT Matrix

표

Example: 8-point DFT Matrix

$\left[\begin{array}{c}X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(6) \\ X(7)\end{array}\right]=\left[\begin{array}{lllllllll}W_{8}^{0} \\ W_{8}^{0} & W_{8}^{0} \text { row } & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\ \hline W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{1} & W_{8}^{4} & W_{8}^{7} & W_{8}^{2} & W_{8}^{5} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ W_{8}^{0} & W_{8}^{5} & W_{8}^{2} & W_{8}^{7} & W_{8}^{4} & W_{8}^{1} & W_{8}^{6} & W_{8}^{3} \\ W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\ W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2} & W_{8}^{1}\end{array}\right] \cdot\left[\begin{array}{c}x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7)\end{array}\right]$

Increasing rotational frequency down the rows of the DFT matrix

Example: 8-point DFT Matrix

					x4		${ }^{x}(6)$		Even samples
$X(0)$	W_{8}^{0}	$x(0)$							
X (1)	W_{8}^{0}	W_{8}^{1}	W_{8}^{2}	W_{8}^{3}	W_{8}^{4}	W_{8}^{5}	W_{8}^{6}	W_{8}^{7}	$x(1)$
X (2)	W_{8}^{0}	W_{8}^{2}	W_{8}^{4}	W_{8}^{6}	W_{8}^{0}	W_{8}^{2}	W_{8}^{4}	W_{8}^{6}	$x(2)$
X (3)	W_{8}^{0}	W_{8}^{3}	W_{8}^{6}	W_{8}^{1}	W_{8}^{4}	W_{8}^{7}	W_{8}^{2}	W_{8}^{5}	$x(3)$
X (4)	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	W_{8}^{0}	W_{8}^{4}	$x(4)$
(5)	W_{8}^{0}	W_{8}^{5}	W	W_{8}^{7}	W_{8}^{4}	W_{8}^{1}	W_{8}^{6}	W_{8}^{3}	$x(5)$
(6)	W_{8}^{0}	W_{8}^{6}	W	W_{8}^{2}	W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	$x(6)$
$X(7)$	W_{8}^{0}	W_{8}^{7}	W_{8}^{6}	W_{8}^{5}	W_{8}^{4}	W_{8}^{3}	W_{8}^{2}	W_{8}^{1}	$x(7)$

Repeated complex multiplications in EVEN rows

[^1]
Re-ordered DFT Matrix

Separate even and odd row operations (and re-order input vector)
$\left[\begin{array}{c}X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(6) \\ X(7)\end{array}\right]=\left[\begin{array}{llllllll}W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{2} & W_{8}^{6} & W_{8}^{1} & W_{8}^{5} & W_{8}^{3} & W_{8}^{7} \\ W_{8}^{0} & W_{8}^{0} & W_{8}^{4} & W_{8}^{4} & W_{8}^{2} & W_{8}^{2} & W_{8}^{6} & W_{8}^{6} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{6} & W_{8}^{2} & W_{8}^{3} & W_{8}^{7} & W_{8}^{1} & W_{8}^{5} \\ W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{4} & W_{8}^{4} & W_{8}^{4} & W_{8}^{4} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{2} & W_{8}^{6} & W_{8}^{5} & W_{8}^{1} & W_{8}^{7} & W_{8}^{3} \\ W_{8}^{0} & W_{8}^{0} & W_{8}^{4} & W_{8}^{4} & W_{8}^{6} & W_{8}^{6} & W_{8}^{2} & W_{8}^{2} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{6} & W_{8}^{2} & W_{8}^{7} & W_{8}^{3} & W_{8}^{5} & W_{8}^{1}\end{array}\right] \cdot\left[\begin{array}{c}x(0) \\ x(4) \\ x(2) \\ x(6) \\ x(1) \\ x(5) \\ x(3) \\ x(7)\end{array}\right]$

Even samples Odd samples

Phasor Rotational Symmetry

To highlight repeated computations on odd samples
as $\mathrm{W}_{8}{ }^{4}=-\mathrm{W}_{8}{ }^{0}, \mathrm{~W}_{8}{ }^{5}=-\mathrm{W}_{8}{ }^{1}, \mathrm{~W}_{8}{ }^{6}=-\mathrm{W}_{8}{ }^{2}, \mathrm{~W}_{8}{ }^{7}=-\mathrm{W}_{8}{ }^{3}$
$\left[\begin{array}{c}X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(6) \\ X(7)\end{array}\right]=\left[\begin{array}{cccccccc}W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & -W_{8}^{0} & W_{8}^{2} & -W_{8}^{2} & W_{8}^{1} & -W_{8}^{1} & W_{8}^{3} & -W_{8}^{3} \\ W_{8}^{0} & W_{8}^{0} & -W_{8}^{0} & -W_{8}^{0} & W_{8}^{2} & W_{8}^{2} & -W_{8}^{2} & -W_{8}^{2} \\ W_{8}^{0} & -W_{8}^{0} & -W_{8}^{2} & W_{8}^{2} & W_{8}^{3} & -W_{8}^{3} & W_{8}^{1} & -W_{8}^{1} \\ W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & -W_{8}^{0} & -W_{8}^{0} & -W_{8}^{0} & -W_{8}^{0} \\ W_{8}^{0} & -W_{8}^{0} & W_{8}^{2} & -W_{8}^{2} & -W_{8}^{1} & W_{8}^{1} & -W_{8}^{3} & W_{8}^{3} \\ W_{8}^{0} & W_{8}^{0} & -W_{8}^{0} & -W_{8}^{0} & -W_{8}^{2} & -W_{8}^{2} & W_{8}^{2} & W_{8}^{2} \\ W_{8}^{0} & -W_{8}^{0} & -W_{8}^{2} & W_{8}^{2} & -W_{8}^{3} & W_{8}^{3} & -W_{8}^{1} & W_{8}^{1}\end{array}\right] \cdot\left[\begin{array}{c}x(0) \\ x(4) \\ x(2) \\ x(6) \\ x(1) \\ x(5) \\ x(3) \\ x(7)\end{array}\right]$

Upper \& lower left-hand quarters are identical
Right hand quarters identical except sign difference!

Adding "Twiddle Factors"

8-Point DFT as Two 4-Point DFTs

Even
Samples

Odd Samples

Combiner adds twiddle factors to data

Radix-2 FFT

Each 4-point DFT can be reduced to two 2-point DFT's

$$
\left[\begin{array}{cccc}
W^{0} & W^{0} & W^{0} & W^{0} \\
W^{0} & -W^{0} & W^{2} & -W^{2} \\
W^{0} & W^{0} & -W^{0} & -W^{0} \\
W^{0} & -W^{0} & -W^{2} & W^{2}
\end{array}\right]=\left[\begin{array}{cccc}
W^{0} & W^{0} & W^{0} \times W^{0} & W^{0} \times W^{0} \\
W^{0} & -W^{0} & W^{2} \times W^{0} & W^{2} \times-W^{0} \\
W^{0} & W^{0} & -W^{0} \times W^{0} & -W^{0} \times W^{0} \\
W^{0} & -W^{0} & -W^{2} \times W^{0} & -W^{2} \times-W^{0}
\end{array}\right]
$$

2×2 Quadrants are identical (with twiddle factors)
Two-point "Butterfly" operation

$$
\begin{aligned}
& {\left[\begin{array}{l}
X(0) \\
X(1)
\end{array}\right]=\left[\begin{array}{cc}
W^{0} & W^{0} \\
W^{0} & -W^{0}
\end{array}\right] \cdot\left[\begin{array}{l}
x(0) \\
x(1)
\end{array}\right]} \\
& {\left[\begin{array}{l}
X(0) \\
X(1)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
x(0) \\
x(1)
\end{array}\right]}
\end{aligned}
$$

Two Point Butterfly

With twiddle factors:

ELEC 3004: Systems

Features of the FFT

- Reduce complex multiplications from N^{2} to:
- $\left(\frac{N}{2}\right) \log _{2}(N)$
- As there are $\log _{2}(N)$ passes
- Each pass requires $\frac{N}{2}$ complex multiplications
- Disadvantages
- More complex memory addressing
- To get appropriate samples pairs for each butterfly
- FFT can be slower (than DFT) for small N (< 16)

Remember: $\log _{2}(N)=x$, where $N=2^{x}$ \& integer x

Alternative FFT Algorithms

- Only case covered so far is
- (one case of) radix-2 decimation in time (DIT) FFT
- requires sequence length, N , to be a power of 2
- achieved by 'zero padding' sequence to desired, N
- Decimation in Frequency
- similar to DIT, twiddle factors on outputs
- Alternatives to radix-2 decomposition
- Radix 3: for sequence length, $\mathrm{N}=$ power of 3
- Radix 4: twice as fast as radix 2 FFT
- half number of passes, $\log 4(\mathrm{~N})$
- Split radix: mixtures of the above

Inverse FFT

- IDFT obtained by
- changing sign of $\omega_{N_{n k}}$
- scaling by $\frac{1}{N}$
- Therefore, we can use same FFT algorithm
- change sign of twiddle factors
- and scale output to get $x[n]$

Interpolation using the DFT

- DFT samples the DTFT
- Normally N samples in both time \& Frequency
- But we can increase the (DFT) sample density!
- By zero padding
- Zero Pad in time domain
- Calculates additional samples of DTFT
- Zero Pad in frequency domain
- Adds additional high frequency components (zero)
- DFT zero padding \equiv sinc interpolation
- Windowed by length, N, of DFT (not ideal sinc)

d. ELEC 3004: Systems

Interpolation via DFT (FFT)

- Interpolation of X[k]
- zero pad sequence $x[n]$
- either start or end of $x[n]$ (or both)
- increased sampling of DTFT spectrum, X(w)
- Interpolation of $\mathrm{x}[\mathrm{n}]$
- zero pad discrete spectrum X[k]
- evenly, both at start or end of the sequence
- to ensure $\mathrm{xu}[\mathrm{n}]$ remains real
- i.e., pad to preserve symmetry of $X[k]$

Applications of the FFT

- Spectral Analysis
- Estimate (power) spectrum with less computations
- i.e., what frequencies in our signal are carrying power (i.e., carrying information)?
- Fast (circular) Convolution
- Convolution requires N^{2} MAC operations $:$
- more efficient alternative via the FFT :)
- Take FFT of both sequences
- Multiply them together (point-wise)
- Take IFFT to get the result ["Hello FFT-W! Bonjour cuFFT!"]
- Fast Cross-correlation
- E.g., correlation detector in digital comm's

Spectral Analysis

- Power Spectral Density (PSD) defined as
- Fourier Transform of Autocorrelation function

$$
S_{x x}(w)=\sum_{m=-\infty}^{\infty} \varphi_{x x}(m) \exp (-j w m \Delta t)
$$

- In practice, we estimate $S_{x x}(w)$ from $\{x[n]\}_{0}{ }^{N-1}$
- i.e., a finite length of sampled data
- This can be done using N - point DFT
- and implemented using the FFT algorithm

[^2]
Spectral Analysis

- Estimate of PSD is given by

$$
\widehat{S}_{x x}[k]=\frac{1}{N}\left|\sum_{n=0}^{N-1} x[n] \exp \left(\frac{-j n k 2 \pi}{N}\right)\right|^{2}
$$

- This is known as a periodogram
- DFT effectively implements narrow-band filter bank
- calculate power (i.e., square) at each frequency k
- Again, window functions often required
- to improve PSD estimate
- e.g., Hanning, Hamming, Bartlet etc

Spectral Analysis

- Alternatively, we can estimate PSD as
- DFT (FFT) of the estimate of the autocorrelation

$$
\widehat{S}_{x x}[k]=\sum_{m=-M}^{M} \hat{\varphi}_{x x}[m] \exp \left(\frac{-j m k 2 \pi}{2 M+1}\right)
$$

Where: $\quad \hat{\varphi}_{x x}[m]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] x[n+m]$

- Assuming $x[n]$ is ergodic (at least stationary)
- Normally restricted range of PSD
- e.g., $0<M<\frac{N}{10}$

Spectral Analysis

- When finding PSD as DFT of $\phi^{x x[m]}$:
$-\phi^{x x[m]}$ has an odd length! $(2 M+1)$
- Therefore, to use the radix-2 FFT we need to
- zero pad $\phi^{x x[m]}$ to length $=$ power of 2
- e.g., for $M=2, \phi^{x x[m]}$ is of length 5
- we need to zero pad to length 8, i.e.,
$-\left\{\phi^{x x[-2]} \phi^{x x[-1]} \phi^{x x[0]} \phi^{x x[1]} \phi^{x x[2]} 0<00\right\}$
- Note, sequence made causal (no change to PSD)
- This estimate of PSD is known as correlogram
- Note, periodogram is most common estimate of PSD

(Linear) Convolution

$$
h[n]=\left\{\begin{array}{llll}
1 & 1 & 1 & 1 \tag{n}
\end{array}\right\}
$$

$$
y[n]=x[n] * h[n]=\left\{\begin{array}{llllllll}
0.5 & 1.25 & 2.25 & 3.5 & 3.0 & 2.25 & 1.25
\end{array}\right\}
$$

In general: length $(y[n])=$ length $(x[n])+$ length $(h[n])-1$

Circular Convolution

Given $X[k]=\operatorname{DFT}\{x[n]\}$ and $H[k]=\operatorname{DFT}\{h[n]\}$
from convolution theorem we know
$\operatorname{IDFT}\{X[k] \cdot H[k]\} \equiv x[n] * h[n]$
$\operatorname{IDFT}\{X[k] \cdot H[k]\}=\left\{\begin{array}{ll}3.5 & 3.5 \\ 3.5 & 3.5\end{array}\right\} \leftarrow$ Wrong Length!
Solution: zero pad both sequences to required length

$$
\left.h_{p}[n]=\left\{\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right\} \quad x_{p}[n]=\left\{\begin{array}{ll}
0.5 & 0.751 .0 \\
1.25 & 0
\end{array}\right) 00\right\}
$$

$\operatorname{IDFT}\left\{X_{p}[k] \cdot H_{p}[k]\right\}=\left[\begin{array}{llllllll}0.5 & 1.25 & 2.25 & 3.5 & 3.0 & 2.25 & 1.25\end{array}\right]$
i.e., $x[n]$ and $h[n]$
are periodic in time

Next Time...

- Estimation! (Kalman Filters!)
- Digital Control!
- Review:
- Chapter 12 of Lathi
- FPE Chapter 1 and 2
- Ponder? $y[k]=f[k] * h[k] \quad Y(\Omega)=F(\Omega) H(\Omega)$
where $F(\Omega), Y(\Omega)$, and $H(\Omega)$ are DTFTs of $f[k], y[k]$, and $h[k]$, respectively; that
is,
$f[k] \Longleftrightarrow F(\Omega), \quad y[k] \Longleftrightarrow Y(\Omega)$, and $h[k] \Longleftrightarrow H(\Omega)$

Summary

- FT of sampled data is known as
- discrete-time Fourier transform (DTFT)
- discrete in time
- continuous \& periodic in frequency
- DFT is sampled version of DTFT
- discrete in both time and frequency
- periodic in both time and frequency
- due to sampling in both time and frequency
- DFT is implemented using the FFT
- Leakage reduced (dynamic range increased)
- with non-rectangular window functions

Summary

- FFT exploits symmetries in the DFT
- Successively splits DFT in half
- odd and even samples
- Reduction to elementary butterfly operation
- with 'twiddle factors'
- Reduce computations from N^{2} to $\left(\frac{N}{2}\right) \log _{2}(N)$
- FFT can be used to implement DFT for
- PSD estimates (periodogram and correlogram)
- Circular (fast) convolution (and correlation)
- Requires zero padding to obtain "correct" answer

[^0]: (開)
 ELEC 3004: Systems

[^1]: (Hay) ELEC 3004: Systems

[^2]: 閶
 ELEC 3004: Systems

