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Week Date Lecture Title
28-Feb|Introduction

2-MarSystems Overview

7-MarSystems as Maps & Signals as Vectors

9-MarnSystems: Linear Differential Systems
3 14-Maﬂ$ampling Theory & Data Acquisition
16-ManAliasing & Antialiasin
21-Mﬂm& Z-Transform
23-MajSecond Order LTID (& Convolution Review)
28-MarFrequency Response
30-MarlFilter Analysis
4-AprDigital Filters (IIR) & Filter Analysis
6-AprDigital Filter (FIR)
7 | 11-AprDigital Windows

13-ApfFFT

1
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20-Aps Holiday

8 27-AprActive Filters & Estimation
2-May|Introduction to Feedback Control
4-May|Servoregulation/PID
9-May|Introduction to (Digital) Control

11-May|Digitial Control

16-May|Digital Control Design

18-May|Stability

23-May|Digital Control Systems: Shaping the Dynamic Response

25-May|Applications in Industry

30-May|System Identification & Information Theory

1-JunSummary and Course Review
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1998 » Chapter 12

TK5102.9..34 1998 (Frequency Response and Digital Filters)
§ 12.1 Frequency Response of Discrete-Time
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— §12.3 Digital Filters

— 8§ 12.4 Filter Design Criteria

— §12.7 Nonrecursive Filters

i+ Chapter 10
(Dlscrete -Time System Analysis Using the z-Transform)
§ 10.3 Properties of DTFT
— §10.5 Discrete-Time Linear System analysis by DTFT

— §10.7 Generalization of DTFT
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Announcement I

Question 5

(a) deriving the equation of the circuit would give us
w? < 2 then by deriving it again and dividing by L, we have our 2nd order ODE

w? < (2 itislinear and causal because it's values will only change with respect to time and does not ook into the future for other
values,

(b) the oscillating frequency is a standard formula given as

w” < a”

(c) by simply deriving the first derivative of the equation and not dividing it by L we get:

w? < 2 substituting q and getting the auxiliary equation

w? < (2 getting the roots by quadratic formula ;2 ~ %

» When using external tools, be sure to copy the LaTeX not the
image (because it might change)

* In this case, the “image” is a web-link which has expired!
- https://www.latex4technics.com/l4ttemp/ysiodz.png?1458878525541

Announcement lll

I h(t)
-1 I
2B\ / 2B
NSO\ - X L G A,
NS \/ 0 \/ WA
(b) b=

* Please don’t link external images/content please
— It might expire and worse might disallow us from grading your
solution - it could be used to change the answer a posteriori
* Please don’t link from Facebook as this reveals source ©
(12527949 1066290980057720 1984531858 n.jpg)
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2D DFT

» Each DFT coefficient is a complex value
— There is a single DFT coefficient for each spatial sample
— A complex value is expressed by two real values in either

Cartesian or polar coordinate space.
+ Cartesian: R(u,v) is the real and I(u, v) the imaginary component
+ Polar: [F(u,v)| is the magnitude and phi(u,v) the phase

F(u,v) = R(u,v) + jI(u,v)

o6 (u.v)

Flu,v) = |F(u,v)

2D DFT

» Representing the DFT coefficients as magnitude and phase is a

more useful for processing and reasoning.
— The magnitude is a measure of strength or length
— The phase is a direction and lies in [-pi, +pi]
» The magnitude and phase are easily obtained from the real and
imaginary values

Fu,v)| = VR2(u,v)+ I2(u,v)
I(u,v
o(u,v) = tan™! [%]




Windowing for the DFT
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Harmonics

 Synthesis of a square pulse: periodic signal by successive
addition of its harmonics (Lathi, p. 202-3)
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Digital Windows!
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Window Functions (Lathi 4.9)

» We often need to truncate data
— Ex: Fourier transform of some signal, say e ~‘u(t)
— Truncate beyond a sufficiently large value of t
(typically five time constants and above).
—  in numerical computations: we have data of finite duration.
— Similarly, the impulse response h(t) of an ideal lowpass filter is
noncausal, and approaches zero asymptotically as [t| — oo

« Data truncation can occur in both time and frequency domain
— In signal sampling, to eliminate aliasing, we need to truncate the
Signal spectrum beyond the half sampling frequency % using an

anti-aliasing filter




Window Functions

Truncation operation may be regarded as multiplying a signal of a large width
by a window function of a smaller (finite) width. Simple truncation amounts to
using a rectangular window wg(t) (Fig, 4.48a) in which we assign unit weight
to all the data within the window width (Jt| < £), and assign zero weight to all
the data lying outside the window (J¢| > Z). It is also possible to use a window in
which the weight assigned to the data within the window may not be constant. In
a triangular window wr(t), for example, the weight assigned to data decreases
linearly over the window width (Fig. 4.48b).

Consider a signal ()} and a window function w(t). If f(t) & F(w) and
w(t) &= W(w), and if the windowed function f,(t) += Fy(w), then

fu®=fOu®)  ad  Fulw) = o Fw) « W W)

Window Functions

fult) = Q) aad  Fule) = 5 P@)« W)

According to the width property of convolution, it follows that the width of F,(w)
equals the sum of the widths of F{w) and W{w). Thus, truncation of a signal
increases its bandwidth by the amount of bandwidth of w(t). Clearly, the truncation
of a signal causes its spectrum to spread (or smear) by the amount of the bandwidth
of w(t). Recall that the signal bandwidth is inversely proportional to the signal
duration (width). Hence, the wider the window, the smaller is its bandwidth, and
the smaller is the spectral spreading. This result is predictable because a wider
window means we are accepting more data (closer approximation), which should
cause smaller distortion (smaller spectral spreading). Smaller window width {poorer
approximation) causes more spectral spreading (more distortion). There are also
other effects produced by the fact that W (w) is really not strictly bandlimited, and
its spectrum — 0 only asymptotically. This causes the spectrum of Fy(w) — 0
asymptotically also at the same rate as that of W (w), even though the F(w) may
be strictly bandlimited. Thus, windowing causes the spectrum of F(w) to leak in
the band where it is supposed to be zero. This effect is called leakage. These twin
effects, the spectral spreading and the leakage, will now be clarified by an example.




Window Functions
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Window Functions

For an example, let us take f(t) = cos wgt and a rectangular window wg(t) =
rect(£), illustrated in Fig. 4.46b. The reason for selecting a sinusoid for f(t) is
that its spectrum consists of spectral lines of zero width (Fig. 4.46a). This choice
will make the effect of spectral spreading and leakage clearly visible. The spectrum
of the truncated signal f,(t) is the convolution of the two impulses of F(w) with
the sinc spectrum of the window function. Because the convolution of any function
with an impulse is the function itself (shifted at the location of the impulse), the
resulting spectrum of the truncated signal is (1/2r times) the two sinc pulses at
+wy, as depicted in Fig. 4.46¢c. Comparison of spectra F(w) and Fy,(w) reveals the
effects of truncation. These are:

-, IO Uy o




Window Functions

1 The spectral lines of F(w) have zero width. But the truncated signal is spread
out by 4w /T about each spectral line. The amount of spread is equal to the
width of the mainlobe of the window spectrum. One effect of this spectral
spreading (or smearing) is that if f(¢) has two spectral components of frequen-
cies differing by less than 4 /T rad/s (2/T Hz), they will be indistinguishable
in the truncated signal. The result is loss of spectral resolution. We would like
the spectral spreading (mainlobe width) to be as small as possible.

2 In addition to the mainlobe spreading, the truncated signal also has sidelobes,
which decay slowly with frequency. The spectrum of F(t) is zero everywhere
except at Zwp. On the other hand, the truncated signal spectrum Fy(w) is zero
nowhere because of sidelobes. These sidelobes decay asymptotically as 1/w.
Thus, the truncation causes spectral leakage in the band where the spectrum
of the signal f(t} is zero. The peak sidelobe magnitude is 0.217 times the
mainlobe magnitude (13.3 dB below the peak mainlobe magnitude). Also, the
sidelobes decay at a rate 1/w, which is —6 dB/octave (or —20 dB/decade). This
is the rolloff rate of sidelobes. We want smaller sidelobes with a faster rate
of decay (high rolloff rate). Figure 4.46d shows {Wg(w)| (in dB) as a function
of w. This plot clearly shows the mainlobe and sidelobe features, with the first
sidelobe amplitude —13.3 dB below the mainlobe amplitude, and the sidelobes
decaying at a rate of —6 dB/octave (or —20 dB per decade).

LGl

Some Window Functions [1]

1. Rectangular

w(n) =1

Rectangular window Fourier transform

0 S ——— —

decibels

0
-40-30-20-10 0 10 20 30 40
samples bins

L
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Some More Window Functions ...

2. Triangular window

n_N-1

w(n) =1— |—xyz1-
2

Triangular window Fourier transform

T T

. decibels

-130
-40-30-20-10 0 10 20 30 40
samples bins

» And Bartlett Windows
— A slightly narrower variant with zero weight at both ends:

o N=1
w(n) =1— |—x—%—
2

LGl

Some More Window Functions...

3. Generalized Hamming Windows
w(n) = o — B cos (ﬁ,’;ﬂl)

- Hanning Window
— w(n) =0.5 (1 — COs (277—”))

Hann window Fourier transform

T TT T3 ofF T T [ T 1T

-130
o - -40-30-20-10 0 10 20 30 40
samples bins

Hamming window (o = 0.53836) Fourier transform

- Hamming’s Window i 1 .

T—T T

w
=
T

- a=054, A=1—-—a=0.46

o
=
T

. decibels
5 2 o &
S

samples bins

L

-130
-40-30-20-10 0 10 20 30 40
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Some More Window Functions...

4. Blackman—Harris Windows
— A generalization of the Hamming family,
Adds more shifted sinc functions for less side-lobe levels

w(n) = ag—aj COS (]%Tl)—kag cos (ﬁ'ﬂ”‘l)—ag cos (%)

Blackman-Harris window Fourier transform

1E T T | I R —

30
-40-30-20-10 0 10 20 30 40
bins

samples

O

Some More Window Functions...

5. Kaiser window
— A DPSS (discrete prolate spheroidal sequence)
Maximize the energy concentration in the main lobe

— w(n) = fo (Wa\/;o—(iﬁ—lﬁ)

Where: |, is the zero-th order modified Bessel function of the
first kind, and usually a = 3.

Kaiser window (a = 3)

Fourier transform
S —— ———

T 1T

. decibels

-130
-40-30-20-10 0 10 20 30 40

samples bins

o
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Remedies for Side Effects of Truncation

For better results, we must try to minimize the truncation’s twin side etfects,
the spectral spreading (mainlobe width) and leakage (sidelobe). Let us consider
each of these ills.

1 The spectral spread {mainlobe width) of the truncated signal is equal to the
bandwidth of the window function w(t). We know that the signal bandwidth
is inversely proportional to the signal width (duration). Hence, to reduce the
spectral spread (mainlobe width), we need to increase the window width.

2 To improve the leakage behavior, we must search for the cause of the slow decay
of sidelobes, In Chapter 3, we saw that the Fourier spectrum decays as 1/w for
a signal with jump discontinuity, and decays as 1/w? for a continuous signal
whose first derivative is discontinuous, and so on.} Smoothness of a signal is
measured by the number of continuous derivatives it possesses. The smoother
the signal, the faster the decay of its spectrum. Thus, we can achieve a given
leakage behavior by selecting a suitably smooth window.

3 For a given window width, the remedies for the two effects are incompatible.
If we try to improve one, the other deteriorates. For instance, among all the
windows of a given width, the rectangular window has the smallest spectral
spread (mainlobe width), but has high level sidelobes, which decay slowly. A
tapered (smooth) window of the same width has smaller and faster decaying
sidelobes, but it has a wider mainlobe.f But we can compensate for the in-
creased mainlobe width by widening the window. Thus, we can remedy both
the side effects of truncation by selecting a suitably smooth window of sufficient
width.

- T T

Remedies for Side Effects of Truncation

There are several well-known tapered-window functions, such as Bartlett (irl-
angular), Hanning (von Hann), Hamming, Blackman, and Kaiser, which truncate
the data gradually. These windows offer different tradeoffs with respect to spectral
spread (mainlobe width), the peak sidelobe magnitude, and the leakage rolloff rate
as indicated in Table 4.3.5:9 Observe that all windows are symmetrical about the
origin (even functions of ¢). Because of this feature, W (w) is a real function of w;
that is, LW (w) is either 0 or =. Hence, the phase function of the truncated signal
has a minimal amount of distortion.

Figure 4.47 shows two well-known tapered-window functions, the von Hann
(or Hanning) window wuan(z) and the Hamming window wyam(z). We have
intentionally used the independent variable z because windowing can be performed
in time domain as well as in frequency domain; so z could be t or w, depending on
the application.

13



Remedies for Side Effects of Truncation

! ww( x) ! Wk X )

x, —x, 0
2 7z 2 7

=

Fig. 4.47 Hanning and Hamming windows.

There are hundreds of windows, each with differing characteristics. But the
choice depends on a particular application. The rectangular window has the nar-
rowest mainlobe. The Bartlett (triangle) window (also called the Fejer or Cesaro)
is inferior in all respects to the Hanning window. For this reason it is rarely used

|:> in practice. Hanning is preferred over Hamming in spectral analysis because it has
faster sidelobe decay. For filtering applications, on the other hand, the Hamming
window is the choice because it has the smallest sidelobe magnitude for a given
mainlobe width. The Hamming window is the most widely used, general purpose
window. The Kaiser window, which uses In(a), the Bessel function of the order 0,
is more versatile and adjustable. Selecting a proper value of o (0 < a < 10) allows
the designer to tailor the window to suit a particular application. The parameter
o controls the mainlobe and sidelobe trade-off. When a = 0, the Kaiser window
is the rectangular window. For & = 5.4414, it is the Hamming window, and when
a = 8.885, it is the Blackman window. As a increases, the mainlobe width increases
and the sidelobe level decreases.

Summary Characteristics of Common VVindow
Functions

Rolloff Peak

Mainlobe Rate Sidelobe Peak 20log g0
No. Window w(f) Width (dB/oct) level (dB) )
Rectangular: rect  ~ 4z 6 13.3 21dB
anguiar: — — -0 =133 -
I ¥ T T [¢
t 8 &
2 Bartlett: A (ﬁ) o =12 —26.5
2t 87
Hanning: 0.5 |1 +c¢ — - —18 -31. i,
3 anning [ + cos ( = )] = 1 1.5 44dB
!
4 Hamming: 0.54 + 0.46 cos (:;E) STY -6 —42.7 _53(“3
2nt 4t 12m
5 Blackman: 0.42 +0.5cos ( — | + 0.08 cos (— ) — —18 —58.1
? ( 1 ) 1 T -74dB
{ t\?
; 5 “\‘(1_4(7) 11.27
6 Kaiser: —— @ 0=a<10 e —6 —59.9 (ax = 8:168)

Lathi, Table 7.3
Punskaya, Slide 92
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Filter Design Using Windows

w ey

7 1y %O

=BG =
H(w)
*
[ o © —
© -
Hio)
()
*
-W 0 Voo —

Fig. 4.48 Filter design using windows.

Frequency Response of Discrete-Time Systems

For (asymptotically stable) continuous-time systems we showed that the system
response to an input e’ is H (jw)e’t, and that the response o an input cos wt is
|H (jw)|cos [wt + LH (jw)]. Similar results hold for discrete-time systems. We now
show that for an (asymptotically stable) LTID system, the system response to an
input ¥ is H[e?e/ and the response to an input cos Qk is |H [e??]] cos (Qk +
LH 7)),

The proof is similar to the one used in continuous-time systems. In Sec. 9.4-2
we showed that an LTID system response to an (everlasting) exponential z* is also
an (everlasting) exponential H [z]z¥. It is helpful to represent this relationship by
a directed arrow notation as

2k = H[z]e* (12.1)

Setting z = e*7% in this relationship yields
M — | (IS (12.2a}
eI — p[p 01 {12.2b)

Addition of these two equations yields
2c08 Ok == He/MeI™ + Hle ™73 = 2Re (.H [ei“ief‘”‘) (12.3)
Expressing H [/ in the polar form

H[e!®) = |H [/ I (12.4)
Eq. (12.3) can be expressed as




Frequency Response of Discrete-Time Systems

cos Ok = [H[e?Y)| cos (ﬂk + lH[njn}) (12.5)

In other words, the system response y[k] to a sinusoidal input cos Qk is given by

oK) = | i)l cos (m + uz[e:‘ﬂ]) (12.68)
Following the same argument, the system response to a sinuseid cos (k + 0) is
ylk] = |H (Y| cos (m +o+ [H[e’“]) (12.6b)

This result applies only to asymptotically stable systems because Eq. (12.1) is valid
only for values of = lying in the region of convergence of Hl[z]. For z = &/, = lies
on the unit circle (|z] = 1). The region of convergence for unstable and marginally
stable systems does not include the unit circle.

This important result shows that the response of an asymptotically stable LTID
system to a discrete-time sinusoidal input. of frequency {1 is also a discrete-time sinu-
soid of the same frequency. The amplitude of the output sinusoid is |H [e/9] times
the input amplitude, and the phase of the output sinusoid is shifted by ZH [e7%] with
respect to the input phase. Clearly [H {e#7] is the amplitude gain, and a plot of
|H [ej“]l versus §2 is the amplitude response of the discrete-time system. Similarly,
£H[e*? is the phase response of the system, and a plot of /H[&'"] vs O shows
how the system modifies or shifts the phase of the input sinusoid. Note that H [e/}]
incorporates the information of both amplitude and phase response and therefore
is called the frequency response of the system.

These results, although parallel to those for continuous-time systems, differ
from them in one significant aspect. In the continuous-time case, the {requency re-
sponse is H (jw). A parallel result for the discrete-time case would lead to frequency
response H [j€)]. Instead, we found the frequency response to be H {e#"]. This devi-
ation causes some interesting differences between the behavior of continuous-time
and discrete-time systems.

Frequency Response of Discrete-Time Systems

B Example 12.1
For a system specified by the equation
wlk+1] - 0.8y[K] = flk +1]
find the system response to the input (a) 1¥ = 1 (b) cos[fk 03]
() a sampled sinusoid cos 1500t with ssmpling interval 7' = 0.001
The system equation can be expressed as

(B = 0.8)ylk] = Ef|k]
Therefore, the transfer function of the system is

E 1
HlE = 255 = T- o8
The frequency response is
m_ L
H'M TToEeA 127
—l —
= T 08(cos 1— j5in 1)
[
" [1-03 j
Tueretere {1~ 08 cos )+ j0Bsin 1
i) = ——— S S—
Vi 7 + (0.85in §2)7
- 12 4]
Goos [ ¢ )
and
LT st [ 0B8N & ] ,
HP) = -t [ (1285)
The amplitude response |H [¢?7]] can also be obtained by observing that |[H|* = HH*
“Therefore
[T = T
= HI|H [ (12.9)

From Eq. (12.7) it follows that

I = (gaem) (7=amam
e < (=) )

R S
- Lo
which yields the result found earlier in Eq. (12.83)

17



Frequency Response of Discrete-Time Systems

14 [e/ 71

0 = 2R In 4r 5n Q==
SR HieR) /
0 n 2r in 4n k34 Q—
-53.13°

Fig. 12.1 Frequency response of an LTID system in Example 12.1.

Frequency Response of Discrete-Time Systems

(a) fKl=1%=1

Since 1% = (e’")* with @ = 0, the amplitude response is H[e®). From Eq. (12.8a)
we obtain

1 1
Hle) = ———————— = ———= =5 =540
e /164 1Lbcos(0) 004

|H[) =5 and LH[E)=0

Therefore

These values also can be read directly from Figs. 12.1a and 12.1b, respectively, correspond-
ing to 02 = 0. Therefore, the system response to input 1 18

ylk] =5(%) =5 (12.10)

(®) 1k = cos[3k ~02]
Here 2 = §. According to Egs. (12.8)

1

|| = — ey = 1983
/1.64 —1.6cos §
0.8sin §
Jm /6 -1 [ -
= P78 | = —0. ad
LH[E™T] tan [1 08 s%] 916 r

These values also can be read directly from Figs. 12.1a and 12.1b, respectively, correspond-
ing to ! = 5. Therefore




Properties of the ROC

=>The ROC is always defined by circles
centered around the origin.

h[k]r~F is absolutely summable, where = |z|.

=>Right-sided signals have “outsided”” ROCs.

if 3ng such that h[n] = 0 ¥n < ng, then if g € ROC, then ¥r with
) < r < oc are also in the ROC.

=> Left-sided signals have “insided” ROCs.
(with Vr within 0<r<r)

ELEC 3004: Systems

|1 April 2017 38

Region of Convergence (ROC) Plots

HG) = gt = ——— 2] >la]

ELEC 3004: Systems
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Combinations of Signals

] ba™ n>=0 ] 0 n>0
1[n] = n| =
Y 0 n <0 2 —ba™ n<0

a=.>

ROC for aqy1[n] + asya[n]

ELEC 3004: Systems Il April 2017 40
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Poles and Zeros

B(s) byt byst ot by
(I(.S‘) N ag +ays+---+ a,s" !

F(s) =

assume b and @ have no common factors (cancel them out if they do . . . )

e the m roots of b are called the zeros of F'; A is a zero of F'if F'(A\) =0

e the n roots of a are called the poles of F'; A is a pole of F'if
limg .y |[F(s)] =

the multiplicity of a zero (or pole) A of £ is the multiplicity of the root A

of b (or a)
Gs + 12
example: —————— has one zero at s = —2, two poles at s = —1
§* 4+ 25+ 1

Source: Boyd, EE102,5-12

Poles and Zeros

factored or pole-zero form of F"

) — bll + bls + - +hm'5'm o ('5 - :l) T (" - :m)

ag+as+---+a,s”  (s—pi)---(s—pn)
where
o k=b,/a,
® ..., Z are the zeros of F' (i.e., roots of b)
® pr...., pn are the poles of F' (i.e., roots of )

(assuming the coefficients of a and b are real) complex poles or zeros come
in complex conjugate pairs

can also have real factored form . . .

Source: Boyd, EE102,5-13
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Pole Zero Plot

poles & zeros of a rational functions are often shown in a pole-zero plot
3

(x denotes a pole; o denotes a zero)

this example is for
(s+1.5)(s+ 1+25)(s + 1 —2j)
(5+25)5—2)(s—1—j)(s— L +J)
(s+ 1.5)(s* +2s + 5)
(s+2.5)(s—2)(s2— 25+ 2)

F(s) = k

= k

(the plot doesn't tell us k)

Source: Boyd, EE102,5-14

Partial Fraction Expansion

F(s) b(s)  bo+bis+---+bys™
a(s)  ap+ais+ -+ a,s”

let’s assume (for now)
e no poles are repeated, i.e., all roots of a have multiplicity one

e m<n

then we can write F in the form

5 r n
s WA

called partial fraction expansion of I

o \...., An are the poles of I
e the numbers rq, ..., r,, are called the residues

o when A\, =\, . =T

Source: Boyd, EE102,5-15
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Partial Fraction Expansion Example

example:
-2 -1 1 1
$3+32+25 s  s+1 s+2
let's check:
-1 1 1 —1(s+1)(s+2)+s(s+2)+s(s+1)
s s+l s+2 s(s+1)(s+2)

in partial fraction form, inverse Laplace transform is easy:

—1 - | Ty T'n
LWR) = £ (S—Af +S_A”)

Ant

= rlff’\" + oot TRE

(this is real since whenever the poles are conjugates, the corresponding

residues are also)
Source: Boyd, EE102,5-16

L

Application: Optical Proximity Correction

Flle v ] View ) Plot} Tools ) Printv) Properties r| Halp v | ool

ATHENA,

Optical Proximity Correction

Microns.
o

Microns

D SIVACO International

L
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Next Time...

» Digital Filters

* Review:
— Chapter 12 of Lathi
— §10. 3 of Strang on FFTs
(cached on Course Website)

« Ponder? ylk] = F[k] + h[k] Y () = F(QH(1)

where F(12), ¥ (£2), and H({2) are DTFTs of f[k], y[k], and h|k], respectively; that
Is,

flk] == Fi(R), ylk] = Y(R), and &lk]<= H(Q)

In Conclusion

* FIR Filters are digital (can not be implemented in analog) and
exploit the difference and delay operators

» A window based design builds on the notion of a truncation of
the “ideal” box-car or rectangular low-pass filter in the
Frequency domain (which is a sinc function in the time domain)

+ Other Design Methods exist:
— Least-Square Design
— Equiripple Design
— Remez method
— The Parks-McClellan Remez algorithm
— Optimisation routines ...
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