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Lecture Schedule: 
Week Date Lecture Title 

1 
28-Feb Introduction 

2-Mar Systems Overview 

2 
7-Mar Systems as Maps & Signals as Vectors 

9-Mar Systems: Linear Differential Systems 

3 
14-Mar Sampling Theory & Data Acquisition 

16-Mar Aliasing & Antialiasing 

4 
21-Mar Discrete Time Analysis & Z-Transform 

23-Mar Second Order LTID (& Convolution Review) 

5 
28-Mar Frequency Response 

30-Mar Filter Analysis 

6 4-Apr Digital Filters (IIR) & Filter Analysis 
6-Apr Digital Windows 

7 
11-Apr Digital Filter (FIR) 

13-Apr FFT 

  

18-Apr 

Holiday 20-Apr 

25-Apr 

8 27-Apr Active Filters & Estimation 

9 
2-May Introduction to Feedback Control 

4-May Servoregulation/PID 

10 
9-May Introduction to (Digital) Control 

11-May Digitial Control 

11 
16-May Digital Control Design 

18-May Stability 

12 
23-May Digital Control Systems: Shaping the Dynamic Response 

25-May Applications in Industry 

13 
30-May System Identification & Information Theory 

1-Jun Summary and Course Review 
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 10  

(Discrete-Time System Analysis 

Using the z-Transform) 

– § 10.3 Properties of DTFT 

– § 10.5 Discrete-Time Linear System 

analysis by DTFT 

– § 10.7 Generalization of DTFT  

to the 𝒵 –Transform 

 

 

• Chapter 12 
(Frequency Response and Digital Filters) 

• § 12.1 Frequency Response of Discrete-Time Systems 

• § 12.3 Digital Filters 

• § 12.4 Filter Design Criteria 

• § 12.7 Nonrecursive Filters 

Today 
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Announcements: Cyclone Debbie 

• Lecture 10: Cancelled (Sorry!) 
– We will makeup some of the material today!  

Sources:  [L] http://www.abc.net.au/news/2017-03-28/cyclone-debbie--space-stations-capture-incredible-

images/8392232 [R] Mr. Fausto Benavides  
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Let’s Start With: (analog) Filters! 
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• Frequency-shaping filters: LTI systems that change the shape 

of the spectrum 

• Frequency-selective filters: Systems that pass some 

frequencies undistorted and attenuate others 

Filters 
Lowpass Bandpass 

Highpass Bandstop (Notch) 
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Filters 
Specified Values: 

• Gp = minimum passband gain 

Typically: 

 

 

• Gs = maximum stopband gain 

– Low, not zero (sorry!) 

– For realizable filters, the gain cannot 

be zero over a finite band (Paley-

Wiener condition) 

• Transition Band: 

transition from the passband to the 

stopband  ωp≠ ωs 

 

 

Lowpass 

Highpass 
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Filter Design & z-Transform 
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• Butterworth: Smooth in the pass-band 

• The amplitude response |H(jω)| of an nth order Butterworth 

low pass filter is given by: 

 

 

 

• The normalized case (ωc=1) 

 

 

 

 

Recall that:   

 

Butterworth Filters 
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Butterworth Filters 

4 April 2017 ELEC 3004: Systems 10 



6 

• Increasing the order, increases the number of poles: 

 

 

 

 

 

 

Odd orders (n=1,3,5…): 

• Have a pole on the Real Axis 

 

Even orders (n=2,4,6…): 

• Have a pole on the off axis 

 

 

Butterworth Filters of Increasing Order: 
Seeing this Using a Pole-Zero Diagram 

Angle between 

poles: 
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• Since H(s) is stable and causal, its poles must lie in the LHP 

• Poles of -H(s) are those in the RHP 

• Poles lie on the unit circle (for a normalized filter) 

 

       

Where: 

 

 

 

Butterworth Filters: Pole-Zero Diagram 

n is the order of 

the filter 

 

4 April 2017 ELEC 3004: Systems 12 



7 

Butterworth Filters: 4th Order Filter Example 

• Plugging in for n=4, k=1,…4: 

 

 

 

 

• We can generalize  Butterworth Table 

 

 

 

This is for 3dB 

bandwidth at 

ωc=1 
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• Start with Normalized equation & Table 

• Replace ω with       in the filter equation 

 

• For example:   

for fc=100Hz  ωc=200π rad/sec 

 
From the Butterworth table: for n=2, a1=√2 

Thus: 

 

 

 

Butterworth Filters: Scaling Back (from Normalized) 
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• Define Gx as the gain of a lowpass Butterworth filter at ω= ωx 

• Then: 

 

 

 
And thus: 

 

 

 

Or alternatively:           &   

 

Solving for n gives: 

 

 

 

PS.  See Lathi 4.10 (p. 453) for an example in MATLAB 

 

 

 

 

Butterworth: Determination of Filter Order 
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• equal-ripple:  

Because all the ripples in the passband are of equal height 

• If we reduce the ripple, the passband behaviour improves, but 

it does so at the cost of stopband behaviour 

Chebyshev Filters 
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• Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-

order Butterworth filter, but this is achieved at the expense of inferior passband 

behavior (rippling)  

 For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev 

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB 

 

• The amplitude response of a normalized Chebyshev lowpass filter is: 

 

 
Where Cn(ω), the nth-order Chebyshev polynomial, is given by: 

 

 

 

      and where Cn is given by: 

Chebyshev Filters 
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• It’s normalized: The passband is 0<ω<1 

• Amplitude response: has ripples in the passband and is 

smooth (monotonic) in the stopband 

• Number of ripples: there is a total of n maxima and minima 

over the passband  0<ω<1 

 

•   

 

• ϵ: ripple height   

 

• The Amplitude at ω=1:  

 

• For Chebyshev filters, the ripple r dB takes the place of Gp 

 

 

 

Normalized Chebyshev Properties 
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• The gain is given by: 

Thus, the gain at ωs is: 

 

• Solving:   

 

 

 

• General Case: 

  

 

Determination of Filter Order 
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• Whereas Butterworth poles lie on a semi-circle, 

The poles of an nth-order normalized Chebyshev filter lie on a 

semiellipse of the major and minor semiaxes: 

 

 

 

  And the poles are at the locations: 

  

Chebyshev Pole Zero Diagram 

4 April 2017 ELEC 3004: Systems 20 



11 

Ex: Chebyshev Pole Zero Diagram for n=3 

 Procedure: 

1. Draw two semicircles of radii a and b 

(from the previous slide). 

2. Draw radial lines along the corresponding 

Butterworth angles (π/n) and locate the 

nth-order Butterworth poles (shown by 

crosses) on the two circles.  

3. The location of the kth Chebyshev pole is 

the intersection of the horizontal 

projection and the vertical projection from 

the corresponding kth Butterworth poles 

on the outer and the inner circle, 

respectively.  

4 April 2017 ELEC 3004: Systems 21 

 

Chebyshev Values / Table 

4 April 2017 ELEC 3004: Systems 22 
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• Chebyshev filters passband has ripples and the stopband is smooth. 

• Instead: this has passband have smooth response and ripples in 

the stopband.  

Exhibits maximally flat passband response and equi-ripple stopband 

 Cheby2 in MATLAB 

 

 
Where: Hc is the Chebyshev filter system from before 

• Passband behavior, especially for small ω, is better than Chebyshev  

• Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)  

• Less time-delay (or phase loss) than that of the Chebyshev 

• Both needs the same order n to meet a set of specifications.  

• $$$ (or number of elements):  

Cheby < Inverse Chebyshev < Butterworth (of the same performance [not order]) 

Other Filter Types:  
Chebyshev Type II = Inverse Chebyshev Filters 
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• Allow ripple in both the passband and the stopband,  

 we can achieve tighter transition band 

 

 
Where:  Rn is the nth-order Chebyshev rational function determined from a given ripple spec. 

  ϵ controls the ripple 

 Gp =  

• Most efficient (η)  
– the largest ratio of the passband gain to stopband gain 

– or for a given ratio of passband to stopband gain, it requires the 

smallest transition band  

 

 in MATLAB: ellipord followed by ellip  

 

 

Other Filter Types:  
Elliptic Filters (or Cauer) Filters 
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Filter Type 
Passband 

Ripple 

Stopband 

Ripple 

Transition 

Band 

MATLAB Design 

Command 

Butterworth No No Loose butter 

Chebyshev Yes No Tight cheby 

Chebyshev Type II 

(Inverse Chebyshev) 
No Yes Tight cheby2 

Eliptic Yes Yes Tightest ellip 

In Summary 

4 April 2017 ELEC 3004: Systems 25 

 

Almost there: (digital) Signal Types! 
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Impulse Response of Both Types 
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 Digital Filters Types 
FIR   

From H(z): 

  

 

 

 Filter becomes a “multiply, 

accumulate, and delay” system: 

 

IIR 

• Impulse response function 

that is non-zero over an 

infinite length of time.  
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• Require no feedback.  

• Are inherently stable.  

• They can easily be designed to be linear phase by making the 

coefficient sequence symmetric 

• Flexibility in shaping their magnitude response 

• Very Fast Implementation (based around FFTs) 

 

 

• The main disadvantage of FIR filters is that considerably more 

computation power in a general purpose processor is required 

compared to an IIR filter with similar sharpness or selectivity, 

especially when low frequency (relative to the sample rate) 

cutoffs are needed. 

  

FIR Properties 
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• Transfer function of the filter is  

 

 

 

 

• Finite Impulse Response (FIR) Filters: (N = 0, no feedback) 

From H(z): 

 

 

 

∵ H(ω) is periodic and conjugate  

∴ Consider ω ∈ [0, π] 

 

FIR as a class of LTI Filters  

4 April 2017 ELEC 3004: Systems 30 

http://en.wikipedia.org/wiki/Linear_phase
http://en.wikipedia.org/wiki/Selectivity_(electronic)


16 

• Let us consider an FIR filter of length M  

• Order N=M-1   (watch out!)   

• Order   number of delays  

 

 

 

FIR Filters  
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Obtain the impulse response immediately with x(n)= δ(n): 

 

 

 

 

• The impulse response is of finite length M (good!) 

 

• FIR filters have only zeros (no poles)  (as they must, N=0 !!) 
– Hence known also as all-zero filters 

 

• FIR filters also known as feedforward or non-recursive, or 

transversal filters 

 

 

FIR Impulse Response 
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FIR & Linear Phase 
• The phase response of the 

filter is a linear 

function of frequency 

 

• Linear phase has 

constant group delay, all 

frequency components have 

equal delay times. ∴ No 

distortion due to different time 

delays of different frequencies 

 

• FIR Filters with: 

 

 

 

 

Ref: Wikipedia (Linear Phase) 
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FIR & Linear Phase  Four Types 

Ref: Wikipedia (Linear Phase) 

• Type 1: most versatile 

• Type 2: frequency response is always 0 at ω=π  
(not suitable as a high-pass) 

• Type 3 and 4: introduce a π/2 phase shift, 0 at ω=0  
(not suitable as a high-pass) 
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DTFT 
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• First Thought: 

 

 

• How to get DTFT?  FFT? 

• Slightly Naïve ∵  
o H(ω) cannot be exactly zero over any band of frequencies 

(Paley-Wiener Theorem) 

 

Digital Filters  DTFT 

Lathi, p. 621 

FFT Crop Un-FFT Go! 

4 April 2017 ELEC 3004: Systems 36 



19 

• The frequency response is limited to 2π 

• DTFT is a convolution responses in time domain… 

 

DTFT is a Convolution 

Lathi, p. 623 
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DTFT  z-Transform 
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The Discrete-Time Fourier Transform 
• Synthesis: 
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The Discrete-Time Fourier Transform 
• Analysis/Inverse: 

 

 

 

 

• x[n] is the (limiting) sum of sinusoidal components  

of the form 
1

2𝜋
𝑋 𝑒𝑗Ω 𝑑Ω ejΩn 

 

 

• Together: Forms the DTFT Pair 

 

4 April 2017 ELEC 3004: Systems 40 



21 

The Discrete-Time Fourier Transform 
• Ex: 
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The Discrete-Time Fourier Transform 
• Observe:  

“Kinship Of Difference Equations To Differential Equations” 
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The Discrete-Time Fourier Transform 
• Ex(2):  The DTFT of the real sinusoid 
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BREAK 
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Now: (digital) Filters! 
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Fourier Series & Rectangular Functions

See:  

• Table 7.1 (p. 702)  Entry 17  

& Table 9.1 (p. 852)  Entry 7 

 

 

Ref: http://cnx.org/content/m32899/1.8/ 

 http://www.thefouriertransform.com/pairs/box.php 

Ref: http://cnx.org/content/m26719/1.1/ 

http://www.wolframalpha.com/input/?i=IFFT%28sinc%28f%29%29 
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• The  function might look familiar 
– This is the frequency content of a square wave (box) 

 

 

 

 

• This also applies to signal reconstruction! 

Whittaker–Shannon interpolation formula 
– This says that the “better way” to go from Discrete to Continuous 

(i.e. D to A) is not ZOH, but rather via the sinc! 

 

 

Fourier Series & Rectangular Functions 
[2] 

Ref:  http://www.wolframalpha.com/input/?i=FFT%28rect%28t%29%29 

http://cnx.org/content/m32899/1.8/ 
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• Previously we have analysed 
– difference equations (y[n]) 

– transfer functions (H(z)) 

• To obtain time/frequency domain response  
– Impulse (h[n]) or frequency (H(w)) response 

• Now we have a specification 
– frequency response (filters) 

– time response (control) 

• Goal to design a filter that meets specification 
– i.e., determine transfer function 

– and therefore difference equation (implementation) 

Filter Design 
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Filter Specification in the Frequency Domain 

  Passband   Transition           Stopband  

    1 

|H(w)| 

2 

wp  wc     wst 
w 

Specified 
1 = passband ripple (dB) 
2 = stopband attenuation (dB) 

wp = passband edge (Hz) 
wst = stopband edge (Hz) 
Calculated 
wc = cutoff frequency (@ 3dB) 
filter type/order to meet 
       specification 
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• Example, consider 

 

 

 

• Normalise to negative powers of z (causal) 
– re-arrange and take inverse z transform 

 

Transfer Function  Difference Equation 
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 

bM b1 b2 

z -1 z -1 z -1 

y[n] 

z -1 z -1 z -1 

 

a0 a1 aN 

x[n] 

x’[n] 

Two LTI filters in cascade: 
1. feedforward (ai) 

• forms x’[n] 
2. feedback (bi) 

• forms y[n] 

+ 
Direct Form I: Direct realisation of digital filter 
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z -1 z -1 z -1 

 

a0 a1 aN 

 

bM b1 b2 

z -1 z -1 z -1 

y[n] 

x[n] 

A 

A’ 

B 

B’ 

C 

C’ 

Filters are linear 
so can swap order. 
Redundant time  
delays (z-1) as A=A’ 
B=B’ and C=C’ 

y’[n] 

Note: y’[n]  x’[n] of previous slide BUT y[n] = y[n]  so, same filter 

Reordered form of realisation 
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bM b1 

y[n] 

z -1 z -1 z -1 

 

a0 a1 aN 

 
x[n] 

redundant time delays removed 

y’[n] 

Direct form II:  
Canonical form of realisation (minimum memory) 
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+ 

Derivation of Canonical Form 

General form of  
transfer function 

where 

Re-arranging in terms of output 

Which as a difference equation is 

where 

Remember 

Canonical terms 
A’  B’ C’ 

Direct II 

Direct I 

- 

- 

+ 
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• Direct Form I 
– Conceptually simplest realisation 

– Often less susceptible to noise 

• Canonical/Direct Form II 
– Minimimum memory (storage) 

• Filter design 
– Determine value of filter coefficients (all ai & bi) 

– Poles controlled by bi coefficients 
• if any bi  0 then filter IIR (recursive) 

• if all bi = 0 then filter FIR (non-recursive) 

– Zeros controlled by ai coefficients 

Canonical Realisation 
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• Transfer function factorised to 
– Product of second order terms Hn(z) 

– C is a constant (gain) 

Cascade Form 

 H1(z)   H2(z)   HN(z)  C 
x[n] y[n] 





N

n

n zHCzH
1

)()(

Most common realisation 
Often assumed by many filter design packages  

many 2nd order sections have integer coefficients 
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• Transfer function expressed as 
– partial fraction expansion of second order terms 

Parallel Form 





N

n

n zHCzH
1

)()(

 HN(z)  

 H2(z)  

 H1(z)  

x[n] 

C 

y[n] 
: : 

Least sensitive 
to coefficient 

errors, i.e., when 
limited No. bits  
to represent real 
() coefficient 
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• Canonic form of Second order system 

• 2nd order, system ‘building block’ 

Bi-quadratic Digital Filter 

b2 b1 

y[n] 

z -1 z -1 

 

a0 a1 a2 

 
x[n] 

]2[]1[]2[]1[][][ 21210  nybnybnxanxanxany

Difference equation: 
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• Normally based on analogue prototypes 
– Butterworth, Chebyshev, Elliptic etc 

• Then transform H(s)  H(z) 

• Three popular methods: 

• Impulse invariant 
– produces H(z) whose impulse response is a sampled version of 

h(t) (also step invariant) 

• Matched z – transform 
– poles/zeros H(s) directly mapped to poles/zeros H(z) 

• Bilinear z – transform 
– left hand s – plane mapped to unit circle in z - plane 

IIR Filter Design Methods 
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• Simplest approach, proceeds as follows, 

• Select prototype analogue filter 

• Determine H(s) for desired wc and ws 

• Inverse Laplace,  
– i.e., calculate impulse response, h(t) 

• Sample impulse response h(t)|t=ntd 
– h[n] = td h(ntd) 

• Take z - transform of h[n]  H(z) 
– poles, p1 map to exp(p1td) (maintains stability) 

– zeros have no simple mapping 

Impulse Invariant 
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• Useful approach when 
– Impulse (or step) invariance is required, or 

• e.g., control applications 

– Designing Lowpass or Bandpass filters 

• Has problems when 
– H(w) does not  0 as w   

– i.e., if H(w) is not bandlimited, aliasing occurs 

– e.g., highpass or bandstop filters 

Impulse Invariant 
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• Maps poles/zeros in s – plane directly 
– to poles/zeros in z – plane 

• No great virtues/problems 

• Fairly old method 
– not commonly used 

– so we won’t consider it further 

Matched z - transform 
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• Maps complete imaginary s –plane () 
– to unit circle in z -plane  

•  i.e., maps analogue frequency wa to 
– discrete frequency wd  

• uses continuous transform, 

Bilinear z - transform 








 




2
tan

2 tw

t
w d

a

This compresses (warps) wa to have finite extent ws/2 
i.e., this removes possibility of any aliasing  
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wa 
 
 
 
 
0 

Analogue 
Filter 

|H(wa)| 
  -         0                  2          3      4     wdt/2  

wdt/2 

|H(wd)| 

wd -ws/2     0       ws/2      ws        3ws/2      2ws  

Spectral compression 
due to the bilinear  
z -transform 

Digital 
Filter 

tan transform maps wa to wd  

Note, H(wd) periodic, due to sampling 
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Bilinear Transform 

The bilinear transform 
 
 

Transforming to s-domain 
Remember: s = ja  
and tan = sin/cos 

Where  = dt/2 
 
 

Using Euler’s relation 
This becomes… 

(note: j terms cancel) 
 
 

Multiply by exp(-j)/exp(-j) 
 
 

As z = exp(sdt) = exp(jdt) 
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• Convert H(s)  H(z) by substituting, 

 

 

 

 

• However, this transformation compresses the analogue 

frequency response, which means 
– digital cut off frequency will be lower than the analogue 

prototype 

• Therefore, analogue filter must be “pre-warped” prior to 

transforming H(s)  H(z) 

 

Bilinear Transform 
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 
 1

1

1

12









zt

z
s

Note: this comes directly 
from tan transform 
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Bilinear Pre-warping 

a = d 








 




2
tan

2 tw

t
w d

a
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Bilinear Transform: Example 

• Design digital Butterworth 

lowpass filter 

– order, n = 2, cut off 

frequency wd = 628 rad/s 

– sampling frequency ws = 

5024 rad/s (800Hz) 

• pre-warp to find wa that 

gives desired wd 

• Butterworth prototype (unity 

cut off) is, 

 

12

1
)(

2 


ss
sH

rad/s 663
8002

628
tan

800
1

2























aw Note: wd < wa  

due to compression 
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• De-normalised analogue prototype (s’ = s/ 𝜔𝑐) 
– 𝜔𝑐  =  663 𝑟𝑎𝑑/𝑠 (required 𝜔𝑎 to give desired) 

 

 

 

 

– Convert H(s)  H(z) by substituting  

 

Bilinear Transform: Example 
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1
663

2

663

1
)(

2











ss
sH d

333.0942.0

098.0195.0098.0
)(

2

2






zz

zz
zH

Note: H(z) has both  
poles and zeros 
H(s) was all-pole 

1
)1(663

)1(8002
2

)1(663

)1(8002

1
)(

1

1
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1

1




































z

z

z

z
zH

 
 1

1

1

12









zt

z
s

 Multiply out and make causal: 

333.0942.0

098.0195.0098.0

)(

)(
)(

2

2






zz

zz

zX

zY
zH

[ ] 0.098 [ ] 0.195 [ 1] 0.098 [ 2]

0.942 [ 1] 0.333 [ 2]

y n x n x n x n

y n y n

    

   

)098.0195.0098.0)(()333.0942.01)((

)098.0195.0098.0)(()333.0942.0)((

2121

22

 



zzzXzzzY

zzzXzzzY

Finally, apply inverse z-transform to yield the 

difference equation: 

Bilinear Transform: Example 
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Bilinear Transform: Example 

c 

Magnitude response 

1. same cut off 
    frequency, 
2. increased 
    roll off and  
    attenuation 
    in stopband 
3.  attenuation 

    at ws/2 

c 

4 April 2017 ELEC 3004: Systems 71 

Bilinear Transform: Example 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1
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Real Part

Im
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g
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 P
a
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Pole/Zero Plot
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Bilinear Transform: Example 

Phase response 

Bilinear transform has 
effectively increased 

digital filter order 
(by adding zeros) 

Increased phase 
delay 
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Bilinear Transform: Example 

]2[333.0]1[942.0

]2[098.0]1[195.0][098.0][





nyny

nxnxnxny

-0.333 0.942 

y[n] 

z -1 z -1 

 

0.098 0.195 0.098 

 
x[n] 

]2['333.0]1['942.0][]['

]2['098.0]1['195.0]['098.0][





nynynxny

nynynyny

Canonical Implementation 

of the difference equation y[n]’ 
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Bilinear Transform: Example 

0 2 4 6 8 10 12 14 16

0

0.05

0.1

0.15

0.2
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0.35

Samples

Impulse Response

A
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p
lit

u
d
e
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• Calculate pre-warping analogue cutoff frequency 

• De-normalise filter transfer function  using pre-warping cut-off 

• Apply bilinear transform and simplify 

• Use inverse z-transform to obtain difference equation  

 

Bilinear Design Summary 
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• Not based on analogue prototype 
– But direct placement of poles/zeros 

• Useful for  
– First order lowpass or highpass 

• simple smoothers 

– Resonators and equalisers 
• single frequency amplification/removal 

– Comb and notch filters 
• Multiple frequency amplification/removal 

Direct Synthesis 
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• General first order transfer function 
– Gain, G, zero at –b, pole at a (a, b  both < 1) 

First Order Filter: Example 

 
 1

1

1

1
)(










az

bzG
zH

exp(j) = -1                        1= exp(j0) 

    
 
o      x 
-b     a 

z = exp(jw) with a +ve & b –ve 
this is a lowpass filter 
i.e.,  

 
 
 a

bG
H

a

bG
H











1

1
)(

1

1
)0(



Remember: H(w) = H(z)|z = exp(jwt) 

s/2 
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• Possible design criteria 
– cut-off frequency, wc 

• 3dB = 20 log(|H (wc)|) 

• e.g., at wc = /2, (1+b)/(1+a) = 2 

– stopband attenuation 
• assume wstop =  (Nyquist frequency) 

• e.g., 2 = H ()/H (0) = 1/21 i.e., 

First Order Filter: Example 

21

1

)1)(1(

)1)(1(

)0(

)(







ab

ab

H

H 
two unknowns (a,b) 
two (simultaneous)  
design equations. 
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• Second order ‘resonator’ 
– single narrow peak frequency response 

– i.e., peak at resonant frequency, w0 

Digital Resonator 

     x 
 
 
 
     x 

w0 

R 

0        w0         /2                    w  

|H(w)|2  

w = 3dB width 

  1 
 
 
1/2 
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Quality factor (Q-factor) 

2

1
Q

• Dimensionless parameter that compares 

– Time constant for oscillator decay/bandwidth () to  

– Oscillation (resonant) period/frequency (0) 

• High Q = less energy dissipated per cycle 

 

 

• Alternative to damping factor () as 

 

 

 

• Note: Q < ½ overdamped (not an oscillator)  

 

f

f
Q



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 00
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
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
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ss
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• To make a peak at w0 place pole  
– Inside unit circle (for stability) 

– At angle w0 distance R from origin 
• i.e., at location p = R exp(jw0) 

– R controls w 

» Closer to unit circle  sharper peak 

• plus complex conj pole at p* = R exp(-jw0) 

Digital Resonator Design 
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2

201   and  )cos(2 RawRa 

Where (via Euler’s relation)  
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• By convention, design Lowpass filters 
– transform to HP, BP, BS, etc 

• Simplest transformation  
– Lowpass H(z’ )  highpass H(z) 

– HHP(z) = HLP(z)|z’  -z 
• reflection about imaginary axis (ws/4) 

• changing signs of poles and zeros 

• LP cutoff frequency, wCLP becomes 
• HP cut-in frequency, wCHP = ½ - wCLP 

Discrete Filter Transformations 
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Lowpass  highpass (z’ = -z) 

Poles/zeros reflected in imaginary axis: wCHP = ½ - wCLP 

Same gain @ ws/4 (i.e., /4) 
|H(wHP)| = |H(/2 - wLP)|  

o               x 

Lowpass 
prototype 

wCLP 

pL = ¼, zL = -1 

x               o 

Highpass 
transform 

wCHP 

pH = -¼, zH = 1 

z - plane 
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Discrete Filter Transformations 

• Lowpass H(z’ )  highpass 

H(z) 

– Cut-off (3dB) frequency = 

wc (remains same) 

• Lowpass H(z’ )  Bandpass 

H(z) 

– Centre frequency = w0  & 

3dB bandwidth = wc 

 
 ztw

ztw
z

c

c




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)cos(
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1
' 0

2
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tw

z

zz
z

c







 





Note: these are not the only possible BP and BS transformations! 
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• Lowpass H(z’ )  Bandstop H(z) 
– Centre frequency = w0   3dB bandwidth = wc 

Discrete Filter Transformations 

 
   

)(tan
)cos(

)cos(

)1/()1()1/(21

)1/()1()1/(2
'
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













Note: order doubles for bandpass/bandstop transformations 
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o   x 

Lowpass 
prototype 

x  o 

Highpass 
transform 

x 
 
o 
 
x 

Bandpass 
transform 

    o 
 
x      x 
 
    o 

Bandstop 
transform 

z - plane 
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• Digital Filter Structures 
– Direct form (simplest) 

– Canonical form (minimum memory) 

• IIR filters 
– Feedback and/or feedforward sections 

• FIR filters 
– Feedforward only 

• Filter design 
– Bilinear transform (LP, HP, BP, BS filters) 

– Direct form (resonators and notch filters) 

– Filter transformations (LP  HP, BP, or BS) 

• Stability & Precision improved 
– Using cascade of 1st/2nd order sections 

Summary 
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• Digital Filters 

 

 

 

• Review:  
– Chapter 10 of Lathi  

 

 

• A signal has many signals  

[Unless it’s bandlimited.  Then there is the one ω] 

 

 

Next Time… 
 
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