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14-M: p Theory & Data Acquisition

16-MarAliasing & Antialiasing

21-MarnDiscrete Time Analysis & Z-Transform

23-MarSecond Order LTID (& Convolution Review)

28-MarFrequency Response
30-MarE: -

4-AprDigital Filters (IIR) & Filter Analysis

6-AprDigital Windows
1 l-ApﬂDigital Filter (FIR)
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2-May|Introduction to Feedback Control

4-May|Servoregulation/PID

9-MayjIntroduction to (Digital) Control

11-May|Digitial Control

16-MayDigital Control Design

18-May|Stability

23-May|Digital Control Systems: Shaping the Dynamic Response

25-May|Applications in Industry

30-May|System Identification & Information Theory

1-JunSummary and Course Review
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Follow Along Reading:

p— Today

L. B.P.Lathi « Chapter 10

Signal processing H T H
2t linear systems (Discrete-Time System Analysis
1998 Using the z-Transform)

TEARRALBII8 1 §10.3 Properties of DTFT

— §10.5 Discrete-Time Linear System
analysis by DTFT

— 810.7 Generalization of DTFT
to the Z—Transform

i+ Chapter 12 L
: (Frequency Response and Digital Filters)

« §12.1 Frequency Response of Discrete-Time Systems
i+ §123Digital Filters :
‘+ 8124 Filter Design Criteria

i+ §12.7 Nonrecursive Filters :
HY Next Time ~ ssssssssssssssssssssssnsssssnnssssnnsnnnnnnnsn ,
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Announcements: Cyclone Debbie

 Lecture 10: Cancelled (Sorry!)
— We will makeup some of the material today! ©

Sources: [L] http://www.abc.net.au/news/2017-03-28/cyclone-debbie--space-stations-capture-incredible-
images/8392232 [R] Mr. Fausto Benavides
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Let’s Start With: (analog) Filters!
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Filters

Lowpass 8 Bandpass
\

A I

Highpass Bandstop (Notch)

» Frequency-shaping filters: LTI systems that change the shape
of the spectrum

» Frequency-selective filters: Systems that pass some
frequencies undistorted and attenuate others




Filters

: Lowpass

JII (111)”

Highpass «

Specified Values:
* Gp = minimum passband gain
Typically:
1
Gp = —== —3dB

V2

+ Gs = maximum stopband gain
— Low, not zero (sorry!)

— For realizable filters, the gain cannot
be zero over a finite band (Paley-
Wiener condition)

 Transition Band:
transition from the passband to the

stopband =» wp# ©s

Filter Design & z-Transform

Filter Type

Mapping

Design Parameters

Low-pass

High-pass

Bandpass

F ALY

s 2 —[2e/(B + 1™ + (8 — /(B + 1))

- sin(e, — @;)/2]
sinf(e, + @)/2]

. = desired cutoff frequency

1 —az!

' ta

~ _cosf(e, + w)/2]
I +oz! " cosl(a, — w)/2]

T cosf(ew, — a)/2]
w,. = desired cutoff frequency

_ cosl{we + w.)/2]

Bandstop z7!

A - /(B + DIz — 2af/(B + D)z + 1

2% = [2a/(B 4+ D)lz"' +1(1 = B)/(1 + )]

cos[(we — we)/2]
B = cotl(w. — w)/2] tan(w, /2)

;1 = desired lower cutoff frequency
wy = desired upper cutoff frequency

=B Bl — /(B + Dl £ 1

* oSl — w2)/2)
B = tan[(wa — w.)/2]tan(w, /2)

wy = desired lower cutoff frequency

w2 = desired upper cutoff frequency




Butterworth Filters

 Butterworth: Smooth in the pass-band
 The amplitude response |H(jw)| of an nt order Butterworth
low pass filter is given by:

B (ju)] =~

» The normalized case (o.=1)

1

= — B () (o) = [HGw) =

1
14w

H(jw)

Recall that: |H (jw)|? = H (jw) H (—jw)

Butterworth Filters

t
| H ()|

ideal (n = oo)

0.707 |




butterworth Filters ot Increasing Order:

Seeing this Using a Pole-Zero Diagram

* Increasing the order, increases the number of poles:

n=1 n=2 n=3

x
X
s Y /3 /
- Li— L] - TS S —
-1 -1 -1
X
®

=>»0dd orders (n=1,3,5...):
» Have a pole on the Real Axis

=>Even orders (n=2,4,6...):
» Have a pole on the off axis

Angle between
poles:

Butterworth Filters: Pole-Zero Diagram

n=1 n=2 n=3
x X
X
x M4
/4 w/3 / /
- —_— K — -
-1 -1 -1 -1 '
X
X
x x

n=4

« Since H(s) is stable and causal, its poles must lie in the LHP

 Poles of -H(s) are those in the RHP
* Poles lie on the unit circle (for a normalized filter)

n is the order of

1 the filter
H(s) =
> H (s) (s —s1)(5—82)...(s— sn)
Where: \
= cos 2%{2%1.—1; — 1) +jsin %(2*’ tn—1) & =y dudymym




Butterworth Filters: 4" Order Filter Example

n=1 n=3 =4

* Plugging in for n=4, k=1,...4:

1
H(s) = ————
/= (s + 0.3827 — 50.9239) (s + 0.3827 + j0.9239)(s + 0.9239 — 70.3827)(s + 0.9230 + 50.3827)
1
(82 4 0.76545 + 1)(s2 + 1.8478s 1)
1

T s4 £ 2613153 1 3.41425% + 2.61315 + 1

» We can generalize =» Butterworth Table

n a1 az az aq a5

This is for 3dB
2 1.41421356

bandwidth at
3 2.00000000 2.00000000 _
4 2.61312593 3.41421356  2.61312593 (t)c—l
5 5798 5.23606798  5.23606798  3.23606798
1370331  7.46410162  9.14162017  7.46410162  3.86370331

Butterworth Filters: Scaling Back (from Normalized)

« Start with Normalized equation & Table
« Replace o with - in the filter equation

» For example:
for f.=100Hz = ®»,=200mx rad/sec

From the Butterworth table: for n=2, a,=\2
Thus:

H (s) =

1
(z)"+v/2(g57) 1
= $24-2007+/2440,00072




Butterworth: Determination of Filter Order

+ Define G, as the gain of a lowpass Butterworth filter at o= o,
° Then ’ 2n
Gz = 20log,q |H (jws)| = —101log [1 i (Lﬁl) ]

We

2n']

G, = —10log [1 s (ﬁ) J
And thus: e

T 2n
G, =—10log [I—F(VWV’*) }

Or alternatively: Y& we=— 2
’]t]' Gp/10°_, |J i {1() -G, /10 _ q

Solving for n gives:

log Km*és/w ~1)/ (10—@»/10 - Jﬂ

n = . P—
2log(ws/wp)

PS. See Lathi 4.10 (p. 453) for an example in MATLAB

Chebysheyv Filters

!
1H (o) | b (o) |

I 1
i 1

Vi+e?
n=6 n=7

- ol 1

+ equal-ripple:
Because all the ripples in the passband are of equal height

« If we reduce the ripple, the passband behaviour improves, but
it does so at the cost of stopband behaviour




Chebyshev Filters

» Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-
order Butterworth filter, but this is achieved at the expense of inferior passband
behavior (rippling)

=> For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev

filter gain is smaller than the comparable Butterworth filter gain by about 6(n - 1) dB

» The amplitude response of a normalized Chebvshev lowpass filter is:

e 1
’H(]’.UN = I; e -
V"l + €2C, % (w)

Where Cn(w), the nth-order Chebyshev polynomial, is given by:

3 =l 3 n Cr(w)
Clulw) = cos (necos™ w)
Cn(w) = cosh (n cosh 1r,;) 01
1 w
- - (+ 9,,2
and where C, is given by: i f“’.‘ 1;
. 4w* — ow
4 8wt-8uw?+1
5 16w’ — 2003 + 5w
6 32wS —48w% +18w2 -1

Normalized Chebyshev Properties

* It’s normalized: The passband is 0<w<1

« Amplitude response: has ripples in the passband and is
smooth (monotonic) in the stopband

» Number of ripples: there is a total of n maxima and minima
over the passbhand 0<w<1

1, n:odd

2 . 0, n:odd |H (0) = ) )
* Cp(0)= { 1, n: even |:> )l SirE n:even

. e ripple height > 7 = /1 + €2

» The Amplitude at v=1: ,1,= \/1:—3

« For Chebyshev filters, the ripple r dB takes the place of G,




Determination of Filter Order

« Thegainisgivenby: ¢ - —10log[1+ 2, %(w)]
Thus, the gain at o is: 20,2 (ws) = 10-C+/10 _ 1

« Solving:
. 1/2
L [107G10 _q]”
= iy e (e
cosh™ " (ws) 10 —1

» General Case:

e = T 10710 J

N 1/2
——— —~ _cosh™} 10—/ ﬂ'
cosh ™ (w, [wp

Chebyshev Pole Zero Diagram

» Whereas Butterworth poles lie on a semi-circle,
The poles of an nt-order normalized Chebyshev filter lie on a
semiellipse of the major and minor semiaxes:

1 1 1 1
a = sinh (—sinh_l (—)) & b= cosh (—sinh_1 (—))
T € T €

And the poles are at the locations:

1
H(s) =
) = T =) G =)
sp = —sin {M]sinhwﬂcos (k—=1)m coshe, k=1,...,n
2n 2n

10



Ex: Chebyshev Pole Zero Diagram for n=3

Procedure:
1. Draw two semicircles of radii a and b
1 (from the previous slide).

8 2. Draw radial lines along the corresponding
Butterworth angles (n/n) and locate the
nth-order Butterworth poles (shown by
crosses) on the two circles.

3. The location of the k! Chebyshev pole is
Ya the intersection of the horizontal
projection and the vertical projection from
the corresponding kth Butterworth poles
on the outer and the inner circle,
respectively.
Chebyshev Values / Table
. K
H(s) = =2 = . =
C .,,_(s) 8" +an-15" 1+ - 4+ ais+ag
ag n odd
Kn = ag ag
'\‘/Tﬁ = W/QU n even
n ap ai az a3z
1 1.9652267 1 db ripple
2 1.1025103 1.0977343 (f=1)
3 0.4913067 1.2384092 0.9883412
4 0.2756276 0.7426194 1.4539248 0.9528114




Other Filter lypes:
Chebyshev Type Il = Inverse Chebyshev Filters

» Chebyshev filters passband has ripples and the stopband is smooth.

* Instead: this has passband have smooth response and ripples in
the stopband.

=>» Exhibits maximally flat passband response and equi-ripple stopband
= Cheby2 in MATLAB

62 2 w
(@) = 1= Moo = gz
Where: H, is the Chebyshev filter system from before =
 Passband behavior, especially for small o, is better than Chebyshev
» Smallest transition band of the 3 filters (Butter, Cheby, Cheby?)
 Less time-delay (or phase loss) than that of the Chebyshev
 Both needs the same order n to meet a set of specifications.

 $3%3 (or number of elements):
Cheby < Inverse ChEbyShev < Butterworth (of the same performance [not order])

Other Filter Types:
Elliptic Filters (or Cauer) Filters

« Allow ripple in both the passband and the stopband,
=>» we can achieve tighter transition band

[H(w)| = — -
V1t 2R, (w)

Where: R, is the nth-order Chebyshev rational function determined from a given ripple spec.
€ control% the ripple

P
- Most efficient m)
— the largest ratio of the passband gain to stopband gain
— or for a given ratio of passband to stopband gain, it requires the
smallest transition band

= in MATLAB: ellipord followed by ellip

12



In Summary

Filter Type Pas_sband Stopband Transition MATLAB Design
Ripple Ripple Band Command
Butterworth No No Loose butter
Chebyshev Yes No Tight cheby
Chebyshev Type Il .
(Inverse Chebyshev) No es Tight cheby2
Eliptic Yes Yes Tightest ellip

Almost there: (digital) Signal Types!
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Impulse Response of Both Types

‘Finite impulse response” (FIR)

yln] = %y[n — 1]+ uln]
hin
1

p— 0| — —
. - —

o

g

p

“Infinite impulse response” (IIR)

=» Digital Filters Types

FIR
From H(z):

D H(w) = ho+ e+ hy_ge i

n—1 n—1
= E hftmi‘;ufig hy sin tw

t=0 t=0

-> Filter becomes a “multiply,
accumulate, and delay” system:

n—1
y(t) = Zhru(" —7)

yln] = bolc[n] +biz[n — 1]+ - -+ byz[n — N]

R

* Impulse response function
that is non-zero over an
infinite length of time.

14
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FIR Properties

* Require no feedback.

 Are inherently stable.

» They can easily be designed to be linear phase by making the
coefficient sequence symmetric

« Flexibility in shaping their magnitude response

» Very Fast Implementation (based around FFTS)

« The main disadvantage of FIR filters is that considerably more

computation power in a general purpose processor is required

compared to an IR filter with similar sharpness or selectivity,

especially when low frequency (relative to the sample rate)
cutoffs are needed.

FIR as a class of LTI Filters

« Transfer function of the filter is

Y(2) _ Sacobiz”t

X (Z) B 1 + 25:1 akz—k

+ Finite Impulse Response (FIR) Filters: (N =0, no feedback)
= From H(z):

Hw) = ho+hie ™™+ 4 hy_eiln=be

n—1 n—1
= E hycostw — 1 E hy sin tw
t=0 t=0

H(z) =

 H(w) is periodic and conjugate
=~ Consider o € [0, n]

15


http://en.wikipedia.org/wiki/Linear_phase
http://en.wikipedia.org/wiki/Selectivity_(electronic)

FIR Filters

 Let us consider an FIR filter of length M
* Order N=M-1 (watch out!)
« Order - number of delays

M -1 M-1

y(n) = Z bpx (n — k) = Z h(k)x(n—Fk)

k=0 k=0

Tml_,m_l [] = uit delay
@ X--&

¥

FIR Impulse Response

Obtain the impulse response immediately with x(n)= 6(n):

M—-1

h(n)=y(n)= Z b0 (n —k) =b,
k=0

The impulse response is of finite length M (good!)

FIR filters have only zeros (no poles) (as they must, N=0 1)
— Hence known also as all-zero filters

FIR filters also known as feedforward or non-recursive, or
transversal filters

16



FIR & Linear Phase

» The phase response of the
filter is a linear

function of frequency D;W:Wf e e
« Linear phase has

constant group delay, all B e e e e

frequency components have 18 i o L s

equal delay times. .. No w SN N

distortion due to different time ~ “if .

delays of different frequencies . 1 oar

Ref: Wikipedia (Linear Phase)

* FIR Filters with:
ne oo hln] -sin(w-(n—a)+ ) =0

FIR & Linear Phase = Four Types

2) FIR Filter (Type Il having Linear Phase b) FIR Filter (Tyne ) having Linear Phase
1 2
T T T T
15
05 | B Hin
0 - 05 |-
05 |- - oe [0
1k | s
* 15 [
15 | g
25 |
2k _ e
25 1 1 1 1 35
o 02 04 06 08 1 o 02 04 06 08 1

Ref: Wikipedia (Linear Phase)

Impulse response # coefs | H (w) Type
hin)=h(M—-1-n) Odd e dw(M=1)/2 (h (%) +2 Z‘k“:’j‘“ﬁ h (% — k) cos (w.".')) 1
hin)=h(M—-1-n) Even e dw(M— “”'22(”71)"% (A — k) cos (w (k= 1))

W= @ [ra

(n) =
hin)=—-h(M—-1-n) | Odd el (M-1)/2-7/2] (QZ(” Dy (”,_,’l — k) sin [;ui.'))
(n)

hin)=—h(M—1-n) | Even e il (M- ”“’V’“]Z'Zigl iy (\," — k) sin (w (k= %))

+ Type 1: most versatile

» Type 2: frequency response is always 0 at o=n
(not suitable as a high-pass)

* Type 3 and 4: introduce a n/2 phase shift, 0 at ®=0

(not suitable as a high-pass)



http://en.wikipedia.org/wiki/Phase_response
http://en.wikipedia.org/wiki/Phase_response
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Digital Filters = DTFT

M,

:,?l'liln-f

-

Al
I

Rl

“lx{

T

]

* First Thought:

-

Lathi, p. 621

El N

 Howtoget DTFT? FFT?
« Slightly Naive -

o H(w) cannot be exactly zero over any band of frequencies

(Paley-Wiener Theorem)

18



DTFT is a Convolution

S1k] .
{2}
=28 =32 -3 =1 —4 0 4 16 28 32 36
-
o,
()
16 3z
i
=Ix -n T ] - it }

Fig. 10.2 Periodic sampled gate pulse and its Fourier spectrum.  Lathi, p. 623

» The frequency response is limited to 2n
* DTFT is a convolution responses in time domain...
F{x*xh} = F{z} - F{h}
N — S N —
Y (w) X(w) H(w)
yln] = a[n] + kin] = F X (w) - H(w)},

DTFT =» z-Transform

The above results motivate the definitions of the z transform, the
discrete-time Fourier transform (DTFT), and the discrete Fourier series
(DFS) to be presented in this chapter and the next. In particular, if the basis
functions for the input can be enumerated as

Puln] = 2%,

that is, if x(¢) can be expressed in the form of Eq. (6.1.1) as
x[n] = > apzl, (6.1.10)
e
then the corresponding output is simply, from Eqs. (6.1.2) and (6.1.8),

ylr| = > a H(z)z! (6.1.11)
The discrete Fourier series for periodic signals is of this form, with
2. = ™ 1f, on the other hand, the required basis functions cannot be
ecnumerated, we must utilize the continuum of functions ¢ln] = z" to
represent x[n| and y[n] in the form of integrals. When z is restricted to have
unit magnitude (that is, z = /), the resulting representation is called the
discrete-time Fourier transform, while if z is an arbitrary complex variable,
the full z-transform representation results.

19



The Discrete-Time Fourier Transform

 Synthesis:
The function X (¢’*) defined by

X(e™) D, x|n)e (7.1.1)

(if it converges) is called the discrete-time Fourier transform (DTET) of the
signal x[n]. In particular, if the region of convergence for the z transform

X(z) = Z v[n|z ™"

includes the unit circle, then the DTEFT equals X (z) evaluated on the unit
circle, that is,
X(e™) = X(z2)

il (7.1.2)

The Discrete-Time Fourier Transform

+ Analysis/Inverse:

] (%] JC)y
tla] = " X(e e dQ.

LIT Jag

« Xx[n] is the (limiting) sum of sinusoidal components
of the form [%X(efﬂ)dﬂ] eln

» Together: Forms the DTFT Pair

20



The Discrete-Time Fourier Transform

© Ex x|n] = a"u|n]
has the z transform

- 1
X(z)

) a|,
1= guz™! L
and thus X (e’?) exists for |a| << | because the ROC then contains the
unit circle. Specifically
ikl 1
X(e*) = —— la| < 1. (7.1.8)
I — ae™

The corresponding magnitude spectrum | X (e’?)| and phase spectrum
£ X(e’?) are shown in Fig. 6.8. Clearly, from the defining sum in Eq.
(7.1.1), the DTFT of x[n] does not converge for || > 1, and we defer
until later the case of |a| = 1

On the other band, the anticausal exponential

wln| = —a"ul-n - 1]
has the z transform
1
W(z) ozl < lal,
| — az
and thus W (e’**) exists for |a| 1, but not for |a| < 1. That is,
o i 1
W(e®) = — ) laj > 1. (7.1.9)
li— a8
Again the casc of |a| = 1 is deferred until later

The Discrete-Time Fourier Transform

» Observe:
“Kinship Of Difference Equations To Differential Equations”

[!
2 + cy(t) = x(¥) (3.15a)
dt

Consider uniform samples of x(f) at intervals of T seconds. As usual, we use the notation x[n] to denote x(nT), the nth sample of x(f). Similarly,
y[n] denotes y[nT], the nth sample of y(f). From the basic definition of a derivative, we can express Eq. (3.15a) at{ = nT as

y[n] —y[n —1]

pm“ T + ¢y[n] = x[n]

Clearing the fractions and rearranging the terms yields (assuming nonzero, but very small T)
y[n] +ayln — 1] = px[n] (3.15b)

where | 7

o= i5eT and ﬁ=—|+rT

We can also express Eq. (3.15b) in advance operator form as
yln + 11+ ey[n] = fx[n + 1] (3.15¢)

21



The Discrete-Time Fourier Transform

* EX(2): The DTFT of the real sinusoid

x[n] = sin&yn = —(¢ p
2

is simply
icy F [ 1
X (e = 2 J[(Q — Q) — 6(Q + Q)]

= —jm[6(R2 — Q) — (2 + Q)]

for |€2|, |€2,] = m, while that of the cosine signal
[ T ..J\)_‘,!]

LA B

y[n] = cos Qun = (e’
15 likewisc
Y(e'™) = 2a(3)[0(Q — Q) + 6(Q + Q)]
- a[S(R2 — Q) + 8(Q2 + Q)]
In addition, the DTFT pair for the de signal x[r] = 1 is simply
| < 2w a(€2), |€2] = m,
as opposed to the dual relationship

oln] <> 1, all Q.
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Now: (digital) Filters!
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Flashback: Fourier Series & Rectangular Functions

§. Fourier Tranform

31 {7‘6(:!, (;)} — Sin:r(t)

x(=1)

=

X(t)

f

Ref: http://cnx.org/content/m26719/1.1/

http:/A amalpha.com/input/?i=IFFT%28sincY

VY.

8f%29%29

§{rect (t)} = sinc (g)

Ref: http://cnx.org/content/m32899/1.8/
http://wwuw.thefouriertransform.com/pairs/box.php

See:

» Table 7.1 (p. 702) Entry 17
& Table 9.1 (p. 852) Entry 7
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http://www.wolframalpha.com/input/?i=IFFT(sinc(f))

FlashbackK: Fourier Series &« Rectangular Functions

[2]

» The sinc function might look familiar
— This is the frequency content of a square wave (box)

P 2 Ref: hitp 18.com/input/2i=FFT%28rect%28t%629%29
e, a0 I A= http:/ J/content/m32899/1.8/

« This also applies to signal reconstruction!
=» Whittaker—Shannon interpolation formula

— This says that the “better way” to go from Discrete to Continuous
(i.e. D to A) is not ZOH, but rather via the sinc!

2(t) = Y5 oo @[] - sinc (BT )

Filter Design

 Previously we have analysed

— difference equations (y[n])

— transfer functions (H(z))

To obtain time/frequency domain response

— Impulse (h[n]) or frequency (H(w)) response
Now we have a specification

— frequency response (filters)

— time response (control)

Goal to design a filter that meets specification
— i.e., determine transfer function

— and therefore difference equation (implementation)
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http://cnx.org/content/m32899/1.8/
http://cnx.org/content/m32899/1.8/

Filter Specification in the Frequency Domain

Specified

IH(W)I . 3 . 8; = passband ripple (dB)

, = stopband attenuation (dB)
,, = passband edge (Hz)

+ = stopband edge (Hz)

alculated
. = cutoff frequency (@ 3dB)
Iter type/order to meet
ificati

81

T T >
w, w. W, w

- q_J T Y
hd
Passband Transition Stopband

Transfer Function — Difference Equation

« Example, consider

z2-0.22-0.08 Make H(2) causal x by Z
H(z) = 2 77
2°+05

» Normalise to negative powers of z (causal)
— re-arrange and take inverse z transform
1-0.2z7"-0.082% Y(2)
1+0.5z72 X (2)
Y(2){1+0.522)= X (z)(1—0.22* —0.082?)
y[n]+0.5y[n —2] = x[n] — 0.2x[n —1] — 0.08x[n — 2]
y[n] = x[n] —0.2x[n —1] — 0.08x[n — 2] — 0.5y[n — 2]

H(z) =

25



Direct Form I: Direct realisation of digital filter

x[n]

3, = a3,

z1 Z |

- Z-I

ay

N
vy =3 a;x(n—i)—= Y b; v(n—1)
i=0 i=1

+ M

x'[n]

Two LTI filters in cascade:
1. feedforward (a;)

2. feedback (b))

forms x'[n]

forms y[n]

y[n]

Reordered form of realisation

x[n]

[ ] » 71

Filters are linear

SO can swap order.
Redundant time
delays (z7) as A=A’
B=B"and C=C’

y[n]

Note: y'In] # x'[n] of previous slide BUT y[n] = y[n] © so, same filter
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Direct torm lII:
Canonical form of realisation (minimum memory)

5 x[n]
b, &) by 9
-1 7 o 1]
vIn] z z z
a, ~& a,~X® ay
5 y[n
redundant time delays removed
Derivation of Canonical Form
N P
¥(z2) EO ai= General form of
H(z) = X % transfer function
(1 - ; b;z)
Y(z)= H(z) X(2) Re-arranging in terms of output
N » i, ){(_—}
Y(=)= XY a;z " T'(2) where Y'(@)=——F
=0 (1-X bz
i=1

Which as a difference equation is

N M
Diect I y(1)= X a; ¥'(n~1) %)
i=0 i=1
Remember

N M
Direct]  »(m)= X a; x(n—i) +¥ b; y(n—1i)
i=0 i=1 Canonical terms
AI Bl CI
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Canonical Realisation

 Direct Form |
— Conceptually simplest realisation
— Often less susceptible to noise
 Canonical/Direct Form Il
— Minimimum memory (storage)

« Filter design
— Determine value of filter coefficients (all ai & bi)

— Poles controlled by bi coefficients
« if any bi = 0 then filter IR (recursive)
« if all bi = 0 then filter FIR (non-recursive)

— Zeros controlled by ai coefficients

Cascade Form

 Transfer function factorised to
— Product of second order terms Hn(z)
— Cis a constant (gain)

H(z2)=C] [ H,(2)

=1

x[n]
%>~ Hy(2) Hy(2) |- 1 Hy(2 |

Most common realisation
Often assumed by many filter design packages
many 2" order sections have integer coefficients

N
n=1

y[n]
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Parallel Form

 Transfer function expressed as

— partial fraction expansion of second order terms

Y

H,(2) ()
H,(2) S,
ol (2 |—D

H(z):C+iHn(z)

Least sensitive
to coefficient

errors, i.e., when
limited No. bits

y[n] to represent real

(R) coefficient

Bi-quadratic Digital Filter

 Canonic form of Second order system
* 2nd order, system ‘building block’

a, =&

5 x[n]
bl_’® b, @
- -1 71
X
5 y[n]

Difference equation:

y[n] = agx[n]+a,x[n—1]+a,x[n—2] +b,y[n—1]+ b, y[n—2]
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lIR Filter Design Methods

Normally based on analogue prototypes

— Butterworth, Chebyshev, Elliptic etc

Then transform H(s) — H(z)

Three popular methods:

Impulse invariant

— produces H(z) whose impulse response is a sampled version of
h(t) (also step invariant)

Matched z — transform

— poles/zeros H(s) directly mapped to poles/zeros H(z)

Bilinear z — transform

— left hand s — plane mapped to unit circle in z - plane

Impulse Invariant

Simplest approach, proceeds as follows,

Select prototype analogue filter

Determine H(s) for desired wc and ws

Inverse Laplace,

— i.e., calculate impulse response, h(t)

Sample impulse response h(t)|t=nAtd

— h[n] = Atd h(nAtd)

Take z - transform of h[n] = H(z)

— poles, p1 map to exp(plAtd) (maintains stability)
— zeros have no simple mapping
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Impulse Invariant

» Useful approach when
— Impulse (or step) invariance is required, or
* e.g., control applications
— Designing Lowpass or Bandpass filters
» Has problems when
— H(w) does not > 0asw — o
— i.e., if H(w) is not bandlimited, aliasing occurs
— e.g., highpass or bandstop filters

Matched z - transform

» Maps poles/zeros in s — plane directly
— to poles/zeros in z — plane

» No great virtues/problems

« Fairly old method
— not commonly used
— so we won’t consider it further
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Bilinear z - transform

» Maps complete imaginary s —plane (+«)
— to unitcircle in z -plane

* i.e., maps analogue frequency wa to
— discrete frequency wd

 uses continuous transform,

2 w, At
w, = —tan
At 2

This compresses (warps) w, to have finite extent +w,/2
i.e., this removes possibility of any aliasing ©

tan transform maps w,{o w,
Analogue w, !
Filter\ / WAL2
H(w, ‘ ‘ :
(o)l 0 -7 0 ‘T 2n :3n 4n wAY2

Spectral compression | IH(#4)|
due to the bilinear
z -transform

Digital/%v

Filter

-wf2 0 w42 W 3wd2 2w W,
Note, H(w,) periodic, due to sampling

&




Bilinear Transform

The bilinear transform

Transforming to s-domain
Remember: s = jo,
and tan6 = sind/coso

Where 6 = wyAt/2

) Jwg At
5 Ya(exp( g )—exp

Af JwgAt

Va(exp( 5 )+ exp

_ 2 (1-exp(-jowsAr))
TN (1 + exp(—jaw An)

_2(1-:2h
T A+ Y

*jwdﬁf

( 2 ) Using Euler’s relation
—jw At This becomes...

( > ) (note: j terms cancel)

Multiply by exp(-j9)/exp(-j0)

As z = exp(s4At) = exp(jogsAt)

Bilinear Transform

» Convert H(s) = H(z) by substituting,

2(1— z‘l)

Atll+z7)

« However, this transformation

frequency response, which means
— digital cut off frequency will be lower than the analogue

prototype

» Therefore, analogue filter must be “pre-warped” prior to

transforming H(s) = H(z2)




Bilinear Pre-warping

2 W, At
w, == tan
20 At 2
(DH

1.6
120 2

(Da = (Dd
0.8
04

0 02 04 06 08 1.0
[OF)

Bilinear Transform: Example

 Design digital Butterworth  « Butterworth prototype (unity

lowpass filter cut off) is,

— order, n =2, cut off
frequency wd = 628 rad/s

— sampling frequency ws =
5024 rad/s (800Hz)

* pre-warp to find wa that
gives desireg wd

W, = 2 ]tan( 5 62%()} =663 rad/s
800 *

H(s) =

1
s2+/25+1

Note: w, < w,
due to compression
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Bilinear Transform: Example

» De-normalised analogue prototype (s’ = s/ w,)
- w, = 663 rad/s (required w, to give desired)

1
H(sy) =
o) [s ) J2s
— | +—+1
663 663
— Convert H(s) = H(z) by substituting
o 201-2)
1 Atll+z7Y)
H(z) = >
1 -1
2x800(1—7zl ) 42 2><800(1—7zl )| 4
663(1+z) 663(1+z)
0.098z% +0.195z +0.098 Note: H(z) has both
H(z): i > ’ ’ poles and zeros
z°—0.942z +0.333 H(s) was all-pole

Bilinear Transform: Example

H(z)— (@) _00982° +0.1952+0.098
X (2) 7 -0.9427+0.333

Multiply out and make causal:

Y (z)(z% —0.9427 +0.333) = X (2)(0.0982° +0.195z + 0.098)
Y (2)(1-0.9422 " +0.3332 %) = X (2)(0.098+0.1952 * +0.098z ?)

Finally, apply inverse z-transform to yield the
difference equation:

y[n]=0.098x[n]+ 0.195x[n —1] + 0.098x[n — 2]
+0.942y[n-1]-0.333y[n—2]
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Bilinear Transform: Example

Magnitude response

o 1. same cut off
frequency,
20 i 2. increased
2 T roll off and
0 Oc e attenuation
% o in stopband
5 3. o attenuation
. at wy/2
-80
-80
-1000 560 10ICIU 1500 2000 2500
frequency (rad/s)
Bilinear Transform: Example
Pole/Zero Plot
1 L 4 T 4 P [ T T T
0.8 i
0.6 i
0.4 -
X
g 02 .
< ]
§ o 1 |
i o
E 02 A
X
-0.4 -
-0.6 .|
-0.8 il
-1 - N
r r r I r r
15 -1 -05 0 05 1 15 2

Real Part

36



Bilinear Transform: Example

Phase response

Increased phase
2 delay
g w
E—Wm
120 q
- Bilinear transform has
-140 ~. B . .
~ e effectively increased
180 e T T digital filter order
4 (by adding zeros)

[} 500 1000 1500 2000 2500
frequency (rad/s)

Bilinear Transform: Example

X[n]

h) A

Canonical Implementation

0.942 -0.333 y[n]=0.098y'[n]+0.195y'[n —1]+0.098y'[n—2]
éi) y'[n] = x[n]+0.942y'[n-1]-0.333y'[n— 2]

- -1 -1
yIn] z z of the difference equation
0.098@ 0.195@ 0.098 y[n] =0.098x[n]+0.195x[n—1]+0.098x[n —2]
+0.942y[n—1]-0.333y[n—2]
n
‘ s y[n]
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Bilinear Transform: Example

Amplitude

Impulse Response

T T T

?

I

¢« o o * 7

I I

6 8 10
Samples

[

ISR ]

S5H @

Bilinear Design Summary

Calculate pre-warping analogue cutoff frequency
De-normalise filter transfer function using pre-warping cut-off
Apply bilinear transform and simplify
Use inverse z-transform to obtain difference equation
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Direct Synthesis

» Not based on analogue prototype
— But direct placement of poles/zeros

* Useful for
— First order lowpass or highpass
* simple smoothers
— Resonators and equalisers
+ single frequency amplification/removal
— Comb and notch filters
+ Multiple frequency amplification/removal

First Order Filter: Example

» General first order transfer function
— Gain, G, zero at -b, pole ata (a, b both < 1)

Remember: H(W) = M), - exptiuns

G(l+bz)
H(z)=
@ (L1-az?)
with a +ve & b-ve ,
this is a lowpass filter
i.e., G(l+b o
H(0) = ﬁ exp(jn) = -1 u);/h exp(jo)
G(1l-b
-
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First Order Filter: Example

* Possible design criteria

— cut-off frequency, wc
« 3dB =20 log(|H (wc)))
« e.g., atwc = /2, (1+h)/(1+a) = V2
— stopband attenuation
+ assume wstop = « (Nyquist frequency)
+ eg,82=H(m)/H(@O)=1/11ie.,

H(z) @-b(-a) 1
HO) @+b)(l+a) 21

two unknowns (a,b)
two (simultaneous)
design equations.

Digital Resonator

* Second order ‘resonator’
— single narrow peak frequency response
— i.e., peak at resonant frequency, w0

s [HW)|?

Aw = 3dB width

/2 T W
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Quality factor (Q-factor)

« Dimensionless parameter that compares
— Time constant for oscillator decay/bandwidth (Aw) to

— Oscillation (resonant) period/frequency (»0)
» High Q = less energy dissipated per cycle

Q=2 _To
Aw Af
« Alternative to damping factor () as
_1 o} o
Q 24 H(S)_sz+2;’a)os+a)§_ 2, Do g 2

S

* Note: Q <% overdamped (not an oscillator)

Digital Resonator Design

« To make a peak at w0 place pole

— Inside unit circle (for stability)
— At angle wO0 distance R from origin

* i.e., at location p = R exp(jw0)

— R controls Aw
» Closer to unit circle — sharper peak
« plus complex conj pole at p* = R exp(-jw0)
1

H(2)

(1_R.exp(ng)z—l)il_R.exp(_jwo)z—l)

-2

1- R(exp(jwo)+exp(— J-Wo))271 +R%z
5
l+a,z 7 +a,z7?

Where (via Euler’s relation)

a, =—2Rcos(w,) and a, = R?
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Discrete Filter Transformations

» By convention, design Lowpass filters
— transform to HP, BP, BS, etc

 Simplest transformation
— Lowpass H(z’ ) — highpass H(z)
— HHP(z) = HLP(2)|z’ — -z
« reflection about imaginary axis (ws/4)
+ changing signs of poles and zeros

 LP cutoff frequency, wCLP becomes
 HP cut-in frequency, wCHP =%, - wCLP

Lowpass — highpass (z’ = -z)

z- plane )
t Lowpass Highpass
prototype transform
Werp Werp
X X
p.= ",z =-1 py=-%,zy=1

Poles/zeros reflected in imaginary axis: wepp = 2 - Wep
Same gain @ w./4 (i.e., n/4)
[HWyp)| = [H(m/2 - wp)|
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Discrete Filter Transformations

« Lowpass H(z’ ) - highpass ¢ Lowpass H(z’ ) — Bandpass

H(2) H(z)
— Cut-off (3dB) frequency = — Centre frequency =w0 &
wc (remains same) 3dB bandwidth = wc

. cos(W.At)-z
=
1 cos(W,At )z

o A= z° e cos(W,At)
—az+1 Cos(W,At)
Note: these are not the only possible BP and BS transformations!

Discrete Filter Transformations

» Lowpass H(z’ ) —» Bandstop H(z)
— Centre frequency = w0 3dB bandwidth = wc

22 —(al(k+1))z+ (1-k) /(1+K)

1+ Qal(k +2))z+((1-k) /(1 +k))z2
_ cos(w,At)
~ cos(w,At)

k =tan®(w_At)

Note: order doubles for bandpass/bandstop transformations

43



z- plane Lowpass Highpass

prototype transform
Bandpass Bandstop
transform

transform

-
N

Summary

« Digital Filter Structures
— Direct form (simplest)
— Canonical form (minimum memory)

* |IR filters
— Feedback and/or feedforward sections
* FIR filters

— Feedforward only
* Filter design
— Bilinear transform (LP, HP, BP, BS filters)
— Direct form (resonators and notch filters)
— Filter transformations (LP — HP, BP, or BS)
« Stability & Precision improved
— Using cascade of 1st/2nd order sections
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Next Time...

+ Digital Filters

* Review:
— Chapter 10 of Lathi

+ A ssignal has many signals ©
[Unless it’s bandlimited. Then there is the one ®]
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