Frequency Response & Filter Analysis

ELEC 3004: Digital Linear Systems Signals & Controls
Dr. Surya Singh
(with material from Kumaresan, Continuous-Time Fourier Transform, URI)

Lecture 5

lect3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/

April 1, 2014

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-Mar</td>
<td>Introduction & Systems Overview</td>
</tr>
<tr>
<td></td>
<td>6-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>2</td>
<td>11-Mar</td>
<td>Signals as Vectors & Systems as Maps</td>
</tr>
<tr>
<td>3</td>
<td>13-Mar</td>
<td>Signals</td>
</tr>
<tr>
<td>13-Mar Sampling & Data Acquisition & Anti-aliasing Filters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-Mar</td>
<td>20-Mar</td>
<td>Sampling</td>
</tr>
<tr>
<td>25-Mar</td>
<td>27-Mar</td>
<td>System Analysis & Convolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-Apr</td>
<td>Frequency Response & Filter Analysis</td>
</tr>
<tr>
<td></td>
<td>3-Apr</td>
<td>Filters</td>
</tr>
<tr>
<td>6</td>
<td>8-Apr</td>
<td>Discrete Systems & Z-Transforms</td>
</tr>
<tr>
<td>10-Apr</td>
<td></td>
<td>Z-Transforms</td>
</tr>
<tr>
<td>15-Apr</td>
<td>17-Apr</td>
<td>Introduction to Control</td>
</tr>
<tr>
<td></td>
<td>29-Apr</td>
<td>Digital Filters</td>
</tr>
<tr>
<td>1-May</td>
<td>3-May</td>
<td>Digital Filters</td>
</tr>
<tr>
<td>6-May</td>
<td>8-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td>8-May</td>
<td>13-May</td>
<td>Digital Control</td>
</tr>
<tr>
<td>15-May</td>
<td></td>
<td>Stability of Digital Systems</td>
</tr>
<tr>
<td>10</td>
<td>20-May</td>
<td>Stability</td>
</tr>
<tr>
<td>1-May</td>
<td></td>
<td>State-Space</td>
</tr>
<tr>
<td>11</td>
<td>22-May</td>
<td>Controllability & Observability</td>
</tr>
<tr>
<td>12</td>
<td>27-May</td>
<td>PID Control & System Identification</td>
</tr>
<tr>
<td>13</td>
<td>29-May</td>
<td>Digital Control System Hardware</td>
</tr>
<tr>
<td></td>
<td>3-Jun</td>
<td>Applications in Industry & Information Theory & Communications</td>
</tr>
<tr>
<td>5-Jun</td>
<td></td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>
Typical Linear Processors

- **Convolution**: \(h(n,k)=h(n-k) \)
- **Cross Correlation**: \(h(n,k)=h(n+k) \)
- **Auto Correlation**: \(h(n,k)=x(k-n) \)
- **Cosine Transform**: \(h(n,k)=\cos\left(\frac{2\pi}{N}nk\right) \)
- **Sine Transform**: \(h(n,k)=\sin\left(\frac{2\pi}{N}nk\right) \)
- **Fourier Transform**: \(h(n,k)=\exp\left(j\frac{2\pi}{N}nk\right) \)
Transform Analysis

- Signal measured (or known) as a function of an independent variable
 - e.g., time: \(y = f(t) \)
- However, this independent variable may not be the most appropriate/informative
 - e.g., frequency: \(Y = f(w) \)
- Therefore, need to transform from one domain to the other
 - e.g., time \(\leftrightarrow \) frequency
 - As used by the human ear (and eye)

Signal processing uses Fourier, Laplace, & \(z \) transforms etc

Sinusoids and Linear Systems

\[
x(t) \text{ or } x(n) \quad \rightarrow \quad h(t) \text{ or } h(n) \quad \rightarrow \quad y(t) \text{ or } y(n)
\]

If \(x(t) = A \cos(\omega_0 t + \theta_0) \)

or \(x(n) = A \cos(\omega_0 n t + \theta_0) \)

then in steady state

\[
y(t) = AC(\omega_0) \cos(\omega_0 t + \theta_0 + \theta(\omega_0))
\]

\[
y(n) = AC(\omega_0 T) \cos(\omega_0 n t + \theta_0 + \theta(\omega_0 T))
\]
Sinusoids and Linear Systems

- The pair of numbers $C(w_0)$ and $q(w_0)$ are the complex gain of the system at the frequency w_0.
- They are respectively, the magnitude response and the phase response at the frequency w_0.

$$y(t) = AC(\omega_0) \cos(\omega_0 t + \theta_0 + \theta(\omega_0))$$
$$y(n) = AC(\omega_0 T) \cos(\omega_0 nt + \theta_0 + \theta(\omega_0 T))$$

Why Use Sinusoids?

- Why probe system with sinusoids?
- Sinusoids are eigenfunctions of linear systems???
- What the hell does that mean?
- Sinusoid in implies sinusoid out
- Only need to know phase and magnitude (two parameters) to fully describe output rather than whole waveform
 - $\sin + \sin = \sin$
 - derivative of $\sin = \sin$ (phase shifted - \cos)
 - integral of $\sin = \sin$ (-\cos)
- Sinusoids maintain orthogonality after sampling (not true of most orthogonal sets)
Frequency Response

Fourier Series → Fourier Transforms

Fourier Series

- Deal with continuous-time periodic signals.
- Discrete frequency spectra.

A Periodic Signal

Source: URI ELE436
Two Forms for Fourier Series

Sinusoidal Form

\[f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{2\pi nt}{T} \right) + \sum_{n=1}^{\infty} b_n \sin \left(\frac{2\pi nt}{T} \right) \]

- \[a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \, dt \]
- \[a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_0 t) \, dt \]
- \[b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega_0 t) \, dt \]

Complex Form:

\[f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \]

\[c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega_0 t} \, dt \]

Source: URI ELE436

Fourier Series

- Any finite power, periodic, signal \(x(t) \)
 - period \(T \)
- can be represented as \((\infty)\) summation of
 - sine and cosine waves
- Called: Trigonometrical Fourier Series

\[x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) + B_n \sin(n\omega_0 t) \]

- Fundamental frequency \(\omega_0 = 2\pi/T \text{ rad/s} \) or \(1/T \text{ Hz} \)
- DC (average) value \(A_0/2 \)
Frequency representation (spectrum) shows signal contains:
- 2Hz and 5Hz components (sinewaves) of equal amplitude.

Fourier Series Coefficients
- An & Bn calculated from the signal, x(t)
 - called: Fourier coefficients

\[
A_n = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos(nw_0 t) dt \quad n = 0,1,2,\cdots
\]
\[
B_n = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin(nw_0 t) dt \quad n = 1,2,3,\cdots
\]

Note: Limits of integration can vary, provided they cover one period.
Fourier Series Coefficients

- Approximation with 1st, 3rd, 5th, & 7th Harmonics added, note:
 - ‘Ringing’ on edges due to series truncation
 - Often referred to as Gibb’s phenomenon
- Fourier series converges to original signal if
 - Dirichlet conditions satisfied
 - Closer approximation with more harmonics

Example: Square wave

\[
x(t) = \begin{cases}
 1, & 0 < t < 1; \\
 -1, & 1 < t < 2; \\
 x(t + 2), & \text{periodic! i.e., } x(t + 2) = x(t)
\end{cases}
\]

\[
A_n = \frac{2}{\pi} \int_0^1 x(t) \cos(n\pi t) dt = \frac{1}{\pi} \int_0^1 \cos(n\pi t) dt - \frac{2}{\pi} \cos(n\pi) dt
\]

\[
A_n = \left[-\sin(n\pi t) \right]_0^1 - \left[-\sin(n\pi t) \right]_1^2 = 0
\]

No cos terms as \(\sin(n\pi) = 0 \quad \forall \ n \)

\[
x(t) \text{ has odd symmetry}
\]

\[
B_n = \frac{2}{\pi} \int_0^1 x(t) \sin(n\pi t) dt = \frac{1}{\pi} \int_0^1 \sin(n\pi t) dt - \frac{2}{\pi} \sin(n\pi) dt
\]

\[
B_n = \left[-\cos(n\pi t) \right]_0^1 - \left[-\cos(n\pi t) \right]_1^2 = -\frac{\cos(n\pi) + 1}{n\pi} + \frac{1}{n\pi} - \frac{\cos(n\pi)}{n\pi}
\]

\[
B_n = \frac{2}{n\pi} (1 - \cos(n\pi)) \quad \text{Sin terms only}
\]
Example: Square wave

Therefore, Trigonometric Fourier series is,

\[x(t) = \sum_{n=1}^{\infty} \frac{2}{n\pi} (1 - \cos(n\pi)) \sin(n\pi t) \]

Expanding the terms gives,

\[x(t) = \frac{4}{\pi} \sin(\pi t) \quad \text{(fundamental)} \]
\[+ 0 \quad \text{(second harmonic)} \]
\[+ \frac{4}{3\pi} \sin(3\pi t) \quad \text{(third harmonic)} \]
\[+ 0 \quad \text{(fourth harmonic)} \]
\[+ \frac{4}{5\pi} \sin(5\pi t) \quad \text{(fifth harmonic)} \]
\[+ \text{etc} \]

- Only odd harmonics;
- In proportion \(1, 1/3, 1/5, 1/7, \ldots\);
- Higher harmonics contribute less;
- Therefore, converges

How to Deal with Aperiodic Signal?

A Periodic Signal

\[f(t) \]
\[T \]
\[t \]

If \(T \to \infty \), what happens?

Source: URI ELE436
Fourier Integral

\[f_T(t) = \sum_{n=-\infty}^{\infty} c_n e^{j\omega_0 n} \]
\[c_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-j\omega_0 t} dt \]
\[= \sum_{n=-\infty}^{\infty} \left[\frac{1}{T} \int_{-T/2}^{T/2} f_T(\tau) e^{-j\omega_0 \tau} d\tau \right] e^{j\omega_0 n} \]
\[= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\int_{-T/2}^{T/2} f_T(\tau) e^{-j\omega_0 \tau} d\tau \right] \omega_0 e^{j\omega_0 n} \]
\[= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left[\int_{-T/2}^{T/2} f_T(\tau) e^{-j\omega_0 \tau} d\tau \right] e^{j\omega_0 \Delta \omega} \]
\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f_T(\tau) e^{-j\omega_0 \tau} d\tau \right] e^{j\omega_0 \Delta \omega} d\omega \]

Let \(\Delta \omega = \omega_0 = \frac{2\pi}{T} \)

\(T \to \infty \Rightarrow d\omega = \Delta \omega \approx 0 \)

Source: URI ELE436

Fourier Integral

\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau) e^{-j\omega \tau} d\tau \right] e^{j\omega t} d\omega \]

\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega \quad \text{Synthesis} \]
\[F(j\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \quad \text{Analysis} \]

Source: URI ELE436
Fourier Series vs. Fourier Integral

<table>
<thead>
<tr>
<th>Fourier Series:</th>
<th>Period Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jnw_0 t}$</td>
<td>$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-jnw_0 t} , dt$</td>
</tr>
<tr>
<td>Fourier Integral:</td>
<td>Non-Period Function</td>
</tr>
<tr>
<td>$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} , d\omega$</td>
<td>$F(j\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} , dt$</td>
</tr>
</tbody>
</table>

Source: URI ELE436

Complex Fourier Series (CFS)

- Also called Exponential Fourier series
 - As it uses Euler’s relation
 $$A \exp(jw_0 t) = A \cos(w_0 t) + jA \sin(w_0 t)$$
 which implies,
 $$\cos(nw_0 t) = \frac{\exp(jnw_0 t) + \exp(-jn w_0 t)}{2}$$
 $$\sin(nw_0 t) = \frac{\exp(jnw_0 t) - \exp(-jn w_0 t)}{2j}$$

- FS as a Complex phasor summation
 $$x(t) = \sum_{n=-\infty}^{+\infty} X_n \exp(jn w_0 t)$$
 Where X_n are the CFS coefficients
Complex Fourier Coefficients

- Again, Xₙ calculated from x(t)
- Only one set of coefficients, Xₙ
 - but, generally they are complex

\[Xₙ = \frac{1}{T} \int_{-T/2}^{+T/2} x(t) \exp(-jnw₀t) dt \]

Remember: fundamental w₀ = 2π/T!

Relationships

- There is a simple relationship between
 - trigonometrical and
 - complex Fourier coefficients,

\[
X₀ = \frac{A₀}{2}
\]

\[
Xₙ = \begin{cases}
\frac{Aₙ - jBₙ}{2}, & n > 0; \\
\frac{Aₙ + jBₙ}{2}, & n < 0.
\end{cases}
\]

Constrained to be symmetrical, i.e., complex conjugate

\[X_{-n} = Xₙ^* \]

Therefore, can calculate simplest form and convert
Example: Complex FS

- Consider the pulse train signal

\[
x(t) = \begin{cases}
 A, & 0 \leq |\tau| \leq \frac{T}{2}; \\
 0, & \frac{T}{2} < |\tau| \leq T; \\
 x(t+T). &
\end{cases}
\]

- Has complex Fourier series:

\[
X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp(-j n \omega_0 \tau) dt = \frac{1}{T} \int_{-T/2}^{T/2} A \exp(-j n \omega_0 \tau) dt
\]

Note: \(\tau \) by \(\tau/\tau \) ...

\[
= \frac{-A \tau}{jn \omega_0 T} \left[\exp \left(-j n \omega_0 \frac{\tau}{2} \right) - \exp \left(j n \omega_0 \frac{\tau}{2} \right) \right]
\]

Note: \(n \) is the ind. variable

Example: Complex FS

- Which using Euler’s identity reduces to:

\[
X_n = \frac{A \tau}{T} \frac{\sin(n \omega_0 \tau/2)}{n \omega_0 \tau/2} = \frac{A \tau}{T} \text{sa}(n \omega_0 \tau/2)
\]

\[
\omega_0 = \frac{2\pi}{T}
\]

Note: letting \(\theta = \frac{n \omega_0 \tau}{2} \)

\[
\exp(-j \theta) - \exp(j \theta)
\]

\[
= \cos(-\theta) + j \sin(-\theta) - (\cos(\theta) + j \sin(\theta))
\]

\[
= \cos(\theta) - j \sin(\theta) - \cos(\theta) - j \sin(\theta) = -2 j \sin(\theta)
\]
Dirichlet Conditions

For Fourier series to converge, f(t) must be:

- defined & single valued
- continuous and have a finite number of finite discontinuities within a periodic interval, and
- piecewise continuous in periodic interval, as must $f'(t)$ be absolutely integrable; i.e.,
 - i.e., have finite energy
- have a finite number of finite discontinuities within a finite interval, and
- have a finite number of maxima and minima within a finite interval

\[\int_{-\infty}^{\infty} |f(t)| \, dt < \infty \]

Note: Periodic signals have FT, if we use impulse functions, $\delta(w)$

Frequency Response

Fourier Series \rightarrow Fourier Transforms
Fourier Transform

- A Fourier Transform is an integral transform that re-expresses a function in terms of different sine waves of varying amplitudes, wavelengths, and phases.

1-D Example:

- When you let these three waves interfere with each other you get your original wave function!

Source: Tufts Uni Sykes Group

Fourier Series

- What we have produced is a processor to calculate one coefficient of the complex Fourier Series
- Fourier Series Coefficients = Heterodyne and average over observation interval T

$$C_k = \frac{1}{T} \int_{0}^{T} h(t) e^{-j \frac{2\pi}{T}kt} dt$$
Fourier Transform

- If we change the limits of integration to the entire real line, remove the division by T, and make the frequency variable continuous, we get the Fourier Transform

\[C(\omega) = \int_{-\infty}^{+\infty} h(t) e^{-j\omega t} \, dt \]

Fourier Transform (is not the Fourier Series per se)

<table>
<thead>
<tr>
<th>Continuous Time</th>
<th>Discrete Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier Series</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>Continuous Fourier Transform</td>
<td>Fourier Transform</td>
</tr>
</tbody>
</table>

Source: URI ELE436
Fourier Transform

- Fourier series
 - Only applicable to periodic signals

- Real world signals are rarely periodic

- Develop Fourier transform by
 - Examining a periodic signal
 - Extending the period to infinity

Problem: as $T \to \infty$, $X_n \to 0$
 - i.e., Fourier coefficients vanish!

Solution: re-define coefficients
 - $X_n' = T \times X_n$

As $T \to \infty$
 - (harmonic frequency) $nw_0 \to w$ (continuous freq.)
 - (discrete spectrum) $X_n' \to X(w)$ (continuous spect.)
 - w_0 (fundamental freq.) reduces $\to dw$ (differential)
 - Summation becomes integration
Fourier Transform Pair

Inverse Fourier Transform:

\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega \]

Synthesis

Fourier Transform:

\[F(j\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \]

Analysis

Continuous Spectra

\[F(j\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \]

\[F(j\omega) = F_R(j\omega) + jF_I(j\omega) \]

\[= |F(j\omega)| e^{j\phi(\omega)} \]

Magnitude

Phase

Source: URI ELE436
Time limited

\[x(t) \text{ with } \tau = 1 \]

\[X(w) = \text{sinc}(w/2\pi) \]

Infinite bandwidth

\[x(t) \text{ with } \tau = 2 \]

\[X(w) = 2 \text{sinc}(w/\pi) \]

Parseval's Theorem
Pulse width $\tau = 4$

$\text{rect}(t/4)$

$\text{rect}(t/4)$

$4 \text{sinc}(2w/\pi)$

$4 \text{sinc}(2w/\pi)$

$\text{rect}(t/8)$

$\text{rect}(t/8)$

$8 \text{sinc}(4w/\pi)$

$8 \text{sinc}(4w/\pi)$
Properties of Fourier Transform

- **Linearity**
 - $F\{a \cdot x(t) + b \cdot y(t)\} = a \cdot X(w) + b \cdot Y(w)$

- **Time and frequency scaling**
 - $F\{x(at)\} = \frac{1}{a} X(w/a)$
 - broader in time \Rightarrow narrower in frequency
 - and vice versa

- **Symmetry (duality)**
 - $2\pi x(-w) = \int X(t) \exp(-jwt) dt$
 - i.e., Fourier transform ‘pairs’

Time limited signal limited has infinite bandwidth;
Signal of finite bandwidth has infinite time support
Properties of Fourier Transform

- if...
- $x(t)$ is real
- Then...
- $X(-w) = X(w)^*$
 - $\Re \{X(w)\}$ is even
 - $\Im \{X(w)\}$ is odd
 - $|X(w)|$ is even
 - $\angle X(w)$ is odd

- $x(t)$ is real and even
- $X(w)$ is real and even
- $x(t)$ is real and odd
- $X(w)$ is imaginary and odd

Fourier Transforms

- $X(\omega) = \delta(\omega - \omega_0)$
- $x(t) = \mathcal{F}^{-1}\{X(\omega)\}$
- $x(t) = \frac{1}{2\pi} \exp(j\omega_0 t)$

Note: $\cos(\omega_0 t)$ has ∞ energy! But is dual of $\delta(w - \omega_0)$

$x(t) = \cos(\omega_0 t)$
(real & even)

$X(w) = \pi[\delta(w - \omega_0) + \delta(w + \omega_0)]$
(real and even)
Fourier Transforms

Note: sin & cos have same Mag spectrum
Phase is only difference

\[x(t) = \sin(w_0 t) \]
(real and odd)

\[X(w) = j\pi [\delta(w+w_0) - \delta(w-w_0)] \]
(imaginary & odd)

Properties of Fourier Transform

- **Time Shift**
 - \[F \{x(t - \alpha)\} = \exp(-j\alpha w)X(w) \]
 - time shift \(\Rightarrow\) phase shift

- **Convolution and multiplication**
 - \[F \{x(t) * y(t)\} = X(w) \cdot Y(w) \]
 - i.e., implement convolution in Fourier domain
 - \[F \{x(t) \cdot y(t)\} = 1/2\pi \{X(w) * Y(w)\} \]
 - i.e., Fourier interpretation of multiplication (e.g., frequency modulation)
Modifies phase only

as
\[
\cos^2 + \sin^2 = 1
\]
More properties of the FT

- Differentiation in time
 \[F \left\{ \frac{d^n}{dt^n} x(t) \right\} = (j\omega)^n X(\omega) \]
 Differentiation \(\Rightarrow \times \omega \)
 (Note: HPF & DC x zero)

- Integration in time
 \[F \left\{ \int_{-\infty}^{t} x(t) dt \right\} = \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega) \]
 Integration \(\Rightarrow /\omega + \text{DC offset} \) (LPF & opposite of differentiation)

More Fourier Transforms

See Tutorial 2 for proof…

Impulse train, ‘comb’ or ‘Shah’ function
More Fourier Transforms

Limit of previous as $\Delta t \to \infty$ and $\Delta t \to 0$ respectively
Note: $f(t) = 1$ has ∞ energy! But is dual of $\delta(t)$

\[
f(t) = \delta(t) \quad \Longrightarrow \quad F(w) = 1
\]

\[
f(t) = 1 \quad \Longrightarrow \quad F(w) = 2\pi\delta(w)
\]

Note: $u(t)$ also has ∞ energy! But $F\{u(t)\} = F\{\delta(t)\}$ i.e., apply integration property

Interpretation of Fourier Transform

- Represents (usually finite energy) signals
 - as sum of cosine waves
 - at all possible frequencies
 - $|X(w)|dw/2\pi$ is amplitude of cosine wave
 - i.e., in frequency band w to $w + dw$
 - $\angle X(w)$ is phase shift of cosine wave
- Also represents finite power, periodic signals
 - Using $\delta(w)$
- Distribution with frequency of
 - both magnitude & phase
 - called a Frequency spectrum (continuous)
Negative Frequency

- Q: What is negative frequency?
- A: A mathematical convenience
- Trigonometrical FS
 - periodic signal is made up from
 - sum 0 to ∞ of sine and cosines ‘harmonics’
- Complex FS and the FT
 - use $\exp(\pm j\omega t)$ instead of $\cos(\omega t)$ and $\sin(\omega t)$
 - signal is sum from 0 to ∞ of $\exp(\pm j\omega t)$
 - same as sum $-\infty$ to ∞ of $\exp(-j\omega t)$
 - which is more compact (i.e., less chalk!)

\[
Ae^{jwt} = A(\cos(\omega t) + j\sin(\omega t))
\]

+ve frequency

\[
Ae^{-jwt} = A\cos(-\omega t) + jA\sin(-\omega t)
\]

-ve frequency
Fourier Image Examples

Lena

Bridge

Fourier Magnitude and Phase

Bridge spectra look similar

20*log10(abs(fft(Lena)))

angle(fft(Lena))

'random' range(±π)
Magnitude and Phase Only

\[
\text{ifft}(\text{abs}(\text{fft}(\text{Lena})) + \text{angle}(0)) \quad \text{ifft}(\text{abs}(\text{fft}(\text{Bridge})) + \text{angle}(\text{fft}(\text{Lena})))
\]

Lena magnitude only \quad Lena phase + bridge magnitude

Note: titles are illustrative only and are not the actual Matlab commands used!

Questions

- If \(F\{x(t)\} = X(w) \)
 - \(F\{x(2t)\} = ? \)
 - \(F\{x(t/4)\} = ? \)
- \(F\{\delta(t)\} = ? \)
- \(F\{1\} = ? \)
Questions

- If $F\{x(t)\} = X(w)$
 - $F\{x(2t)\} = 1/2X(w/2)$
 - narrower in t \Leftrightarrow broader in freq
 - $F\{x(t/4)\} = 4X(4w)$
 - broader in t \Leftrightarrow narrower in freq (but increased amplitude)

- $F\{\delta(t)\} = 1$
 - i.e. flat spectrum (all frequencies equally)

- $F\{1\} = \delta(w)$
 - i.e. impulse at DC only

Frequency

- How often the signal repeats
- Can be analyzed through Fourier Transform

Examples:

- Signals in time domain
- Fourier Transform
- Signals in frequency domain
Noise

Various Types:
- Thermal (white):
 - Johnson noise, from thermal energy inherent in mass.

- Flicker or 1/f noise:
 - Pink noise
 - More noise at lower frequency

- Shot noise:
 - Noise from quantum effects as current flows across a semiconductor barrier

- Avalanche noise:
 - Noise from junction at breakdown (circuit at discharge)
How to beat the noise

- Filtering (Narrow-banding): Only look at particular portion of frequency space
- Multiple measurements …
- Other (modulation, etc.) …

Noise ⊆ Uncertainty

- **Uncertainty:**
 All measurement has some approximation
 A. **Statistical uncertainty:** quantified by mean & variance
 B. **Systematic uncertainty:** non-random error sources

- **Law of Propagation of Uncertainty**
 - Combined uncertainty is root squared

\[u_C = \sqrt{u_1^2 + u_2^2 + \ldots + u_n^2} \]
1. **Over time:** multiple readings of a quantity over time
 - “stationary” or “ergodic” system
 - Sometimes called “integrating”

2. **Over space:** single measurement (summed) from multiple sensors each distributed in space

3. **Same Measurand:** multiple measurements take of the same observable quantity by multiple, related instruments
 - e.g., measure position & velocity simultaneously
 - Basic “sensor fusion”

\[
\sigma_{\text{final}} = \left[\sigma_1^{-1} + \sigma_2^{-1} + \cdots + \sigma_n^{-1} \right]^{-1}
\]

Multiple Measurements Example

- What time was it when this picture was taken?
- What was the temperature in the room?
• **Frequency-shaping filters**: LTI systems that change the shape of the spectrum
• **Frequency-selective filters**: Systems that pass some frequencies undistorted and attenuate others

Filters

- **Lowpass**
- **Bandpass**
- **Highpass**
- **Bandstop (Notch)**

Specified Values:

- **G_p** = minimum passband gain
- Typically:
 \[G_p = \frac{1}{\sqrt{2}} = -3dB \]
- **G_s** = maximum stopband gain
 - **Low**, not zero (sorry!)
 - For realizable filters, the gain cannot be zero over a finite band (Paley-Wiener condition)

- **Transition Band**: transition from the passband to the stopband $\Rightarrow \omega_p \neq \omega_s$
Filter Design & z-Transform

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Mapping</th>
<th>Design Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-pass</td>
<td>$z^{-1} \rightarrow \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$</td>
<td>$\alpha = \frac{\sin(\omega_c - \omega_c'/2)}{\sin(\omega_c + \omega_c'/2)}$, ω_c' = desired cutoff frequency</td>
</tr>
<tr>
<td>High-pass</td>
<td>$z^{-1} \rightarrow -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$</td>
<td>$\alpha = \frac{-\cos(\omega_c + \omega_c'/2)}{\cos(\omega_c - \omega_c'/2)}$, ω_c' = desired cutoff frequency</td>
</tr>
<tr>
<td>Bandpass</td>
<td>$z^{-1} \rightarrow -\frac{z^{-2} - [2\alpha]/{(\beta + 1)}z^{-1} + [(\beta - 1)/{(\beta + 1)}]}{[(\beta - 1)/{(\beta + 1)}]z^{-2} - [2\alpha]/{(\beta + 1)}z^{-1} + 1}$</td>
<td>$\alpha = \frac{\cos(\omega_{c2} + \omega_{c1}/2)}{\cos(\omega_{c2} - \omega_{c1}/2)}$, $\beta = \sec(\omega_{c2} - \omega_{c1}/2)\tan(\omega_{c2}/2)$, ω_{c1} = desired lower cutoff frequency, ω_{c2} = desired upper cutoff frequency</td>
</tr>
<tr>
<td>Bandstop</td>
<td>$z^{-1} \rightarrow -\frac{z^{-2} - [2\alpha]/{(\beta + 1)}z^{-1} + [(1 - \beta)/(1 + \beta)]}{[(1 - \beta)/(1 + \beta)]z^{-2} - [2\alpha]/{(\beta + 1)}z^{-1} + 1}$</td>
<td>$\alpha = \frac{\cos(\omega_{c1} + \omega_{c2}/2)}{\cos(\omega_{c1} - \omega_{c2}/2)}$, $\beta = \sec(\omega_{c1} - \omega_{c1}/2)\tan(\omega_{c1}/2)$, ω_{c1} = desired lower cutoff frequency, ω_{c2} = desired upper cutoff frequency</td>
</tr>
</tbody>
</table>

Butterworth Filters

- Butterworth: Smooth in the pass-band
- The amplitude response $|H(j\omega)|$ of an n^{th} order Butterworth low pass filter is given by:

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}}$$

- The normalized case ($\omega_c = 1$)

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \omega^{2n}}}$$

$H(j\omega)H(-j\omega) = |H(j\omega)|^2 = \frac{1}{1 + \omega^{2n}}$

Recall that: $|H(j\omega)|^2 = H(j\omega)H(-j\omega)$
Butterworth Filters

Increasing the order, increases the number of poles:

- Odd orders (n=1,3,5…):
 - Have a pole on the Real Axis

- Even orders (n=2,4,6…):
 - Have a pole on the off axis

Butterworth Filters of Increasing Order: Seeing this Using a Pole-Zero Diagram

- Increasing the order, increases the number of poles:

 ➔ Odd orders (n=1,3,5…):
 - Have a pole on the Real Axis

 ➔ Even orders (n=2,4,6…):
 - Have a pole on the off axis

Angle between poles: $\frac{\pi}{n}$
Butterworth Filters: Pole-Zero Diagram

- Since $H(s)$ is stable and causal, its poles must lie in the LHP
- Poles of $-H(s)$ are those in the RHP
- Poles lie on the unit circle (for a normalized filter)

$$H(s) = \frac{1}{(s - s_1)(s - s_2)\ldots(s - s_n)}$$

where:

$$s_k = e^{j\frac{\pi}{2n}(2k+n-1)} = \cos\frac{\pi}{2n}(2k+n-1) + j\sin\frac{\pi}{2n}(2k+n-1) \quad k = 1, 2, 3, \ldots, n$$

n is the order of the filter

Butterworth Filters: 4th Order Filter Example

- Plugging in for $n=4$, $k=1,\ldots,4$:

$$H(s) = \frac{1}{(s + 0.3827 - j0.9239)(s + 0.3827 + j0.9239)(s + 0.9239 - j0.3827)(s + 0.9239 + j0.3827)}$$

$$= \frac{1}{(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)}$$

$$= \frac{1}{s^4 + 2.6131s^3 + 3.4142s^2 + 2.6131s + 1}$$

- We can generalize \Rightarrow Butterworth Table

<table>
<thead>
<tr>
<th>n</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.41421356</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.00000000</td>
<td>2.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.61312593</td>
<td>3.41421356</td>
<td>2.61312593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.2366798</td>
<td>5.2366798</td>
<td>5.2366798</td>
<td>3.2366798</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.86370331</td>
<td>7.46410162</td>
<td>9.14162017</td>
<td>7.46410162</td>
<td>3.86370331</td>
</tr>
</tbody>
</table>

This is for 3dB bandwidth at $\omega_c=1$
Butterworth Filters: Scaling Back (from Normalized)
• Start with Normalized equation & Table
• Replace ω with ω/ω_c in the filter equation

• For example:
 for $f_c=100$Hz $\rightarrow \omega_c=200\pi$ rad/sec

 From the Butterworth table: for $n=2$, $a_1=\sqrt{2}$
 Thus:

 $$H(s) = \frac{1}{\left(\frac{s}{200\pi}\right)^2 + \sqrt{2}\left(\frac{s}{200\pi}\right) + 1}$$

 $$= \frac{1}{s^2 + 200\pi \sqrt{2} + 40,000\pi^2}$$

Butterworth: Determination of Filter Order
• Define G_x as the gain of a lowpass Butterworth filter at $\omega = \omega_x$
• Then:

 $$\hat{G}_p = -10 \log \left[1 + \left(\frac{\omega_p}{\omega_c} \right)^{2n} \right]$$

 $$\hat{G}_s = -10 \log \left[1 + \left(\frac{\omega_s}{\omega_c} \right)^{2n} \right]$$

 And thus:

 $$\hat{G}_s = -10 \log \left[1 + \left(\frac{\omega_s}{\omega_c} \right)^{2n} \right]$$

 Or alternatively:

 $$\omega_c = \frac{\omega_p}{\left[10^{-\hat{G}_s/10} - 1 \right]^{1/2n}}$$

 $$\omega_c = \frac{\omega_s}{\left[10^{-\hat{G}_p/10} - 1 \right]^{1/2n}}$$

 Solving for n gives:

 $$n = \frac{\log \left[\left(10^{-\hat{G}_s/10} - 1 \right) / \left(10^{-\hat{G}_p/10} - 1 \right) \right]}{2 \log (\omega_s/\omega_p)}$$

PS. See Lathi 4.10 (p. 453) for an example in MATLAB
Chebyshev Filters

- **equal-ripple:** Because all the ripples in the passband are of equal height.
- If we reduce the ripple, the passband behaviour improves, but it does so at the cost of stopband behaviour.

Chebyshev Filters

- Chebyshev Filters: Provide tighter transition bands (sharper cutoff) than the same-order Butterworth filter, but this is achieved at the expense of inferior passband behavior (rippling).
- For the lowpass (LP) case: at higher frequencies (in the stopband), the Chebyshev filter gain is smaller than the comparable Butterworth filter gain by about $6(n - 1) \text{ dB}$.

- The amplitude response of a normalized Chebyshev lowpass filter is:

$$|\mathcal{H}(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 C_n^2(\omega)}}$$

Where $C_n(\omega)$, the nth-order Chebyshev polynomial, is given by:

$$C_n(\omega) = \cos(n \cos^{-1} \omega)$$

$$C_n(\omega) = \cosh(n \cosh^{-1} \omega)$$

and where C_n is given by:

<table>
<thead>
<tr>
<th>n</th>
<th>$C_n(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>ω</td>
</tr>
<tr>
<td>2</td>
<td>$2\omega^2 - 1$</td>
</tr>
<tr>
<td>3</td>
<td>$4\omega^3 - 3\omega$</td>
</tr>
<tr>
<td>4</td>
<td>$8\omega^4 - 8\omega^2 + 1$</td>
</tr>
<tr>
<td>5</td>
<td>$16\omega^5 - 20\omega^3 + 5\omega$</td>
</tr>
<tr>
<td>6</td>
<td>$32\omega^6 - 48\omega^4 + 18\omega^2 - 1$</td>
</tr>
</tbody>
</table>
Normalized Chebyshev Properties

- It’s normalized: The passband is $0 < \omega < 1$
- **Amplitude response**: has ripples in the passband and is smooth (monotonic) in the stopband
- **Number of ripples**: there is a total of n maxima and minima over the passband $0 < \omega < 1$

\[
C_n^2(0) = \begin{cases}
0, & n : \text{odd} \\
1, & n : \text{even}
\end{cases}
\Rightarrow |H(0)| = \begin{cases}
1, & n : \text{odd} \\
\frac{1}{\sqrt{1+c^2}}, & n : \text{even}
\end{cases}
\]

- ϵ: ripple height $\Rightarrow r = \sqrt{1 + \epsilon^2}$
- The Amplitude at $\omega=1$: $\frac{1}{r} = \frac{1}{\sqrt{1+c^2}}$
- For Chebyshev filters, the ripple r dB takes the place of G_p

Determination of Filter Order

- The gain is given by: $\hat{G} = -10 \log \left[1 + \epsilon^2 C_n^2(\omega) \right]$
 Thus, the gain at ω_s is: $\epsilon^2 C_n^2(\omega_s) = 10^{-\hat{G}/10} - 1$

- Solving:
 \[
n = \frac{1}{\cosh^{-1}(\omega_p)} \cosh^{-1} \left[\frac{10^{-\hat{G}/10} - 1}{10^{\hat{G}/10} - 1} \right]^{1/2}
\]

- General Case:
 \[
n = \frac{1}{\cosh^{-1}(\omega_s/\omega_p)} \cosh^{-1} \left[\frac{10^{-\hat{G}/10} - 1}{10^{\hat{G}/10} - 1} \right]^{1/2}
\]
Chebyshev Pole Zero Diagram

- Whereas **Butterworth** poles lie on a semi-circle, The poles of an \(n \)th-order normalized **Chebyshev** filter lie on a semiellipse of the major and minor semiaxes:

\[
a = \sinh \left(\frac{1}{n} \sinh^{-1} \left(\frac{1}{\epsilon} \right) \right) \quad \& \quad b = \cosh \left(\frac{1}{n} \sinh^{-1} \left(\frac{1}{\epsilon} \right) \right)
\]

And the poles are at the locations:

\[
H(s) = \frac{1}{(s - s_1)(s - s_2) \ldots (s - s_n)}
\]

\[
s_k = -\sin \left[\frac{(2k - 1)\pi}{2n} \right] \sinh x + j \cos \left[\frac{(2k - 1)\pi}{2n} \right] \cosh x, \ k = 1, \ldots, n
\]

Ex: Chebyshev Pole Zero Diagram for \(n=3 \)

Procedure:

1. Draw two semicircles of radii \(a \) and \(b \) (from the previous slide).
2. Draw radial lines along the corresponding Butterworth angles \((\pi/n)\) and locate the \(n \)th-order Butterworth poles (shown by crosses) on the two circles.
3. The location of the \(k \)th Chebyshev pole is the intersection of the horizontal projection and the vertical projection from the corresponding \(k \)th Butterworth poles on the outer and the inner circle, respectively.
Chebyshev Values / Table

\[\mathcal{H}(s) = \frac{K_n}{C'(s)} = \frac{K_n}{s^n + a_{n-1}s^{n-1} + \cdots + a_1 s + a_0} \]

\[K_n = \begin{cases}
 a_0 & \text{n odd} \\
 \frac{a_0}{\sqrt{1 + \epsilon^2}} = \frac{a_0}{10^{p/20}} & \text{n even}
\end{cases} \]

<table>
<thead>
<tr>
<th>n</th>
<th>a₀</th>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9652267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.1025103</td>
<td>1.0977343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.4913067</td>
<td>1.2384092</td>
<td>0.9883412</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2756276</td>
<td>0.7426194</td>
<td>1.4539248</td>
<td>0.9528114</td>
</tr>
</tbody>
</table>

1 db ripple \((\epsilon = 1) \)

Other Filter Types:

Chebyshev Type II = Inverse Chebyshev Filters

- Chebyshev filters passband has ripples and the stopband is smooth.
- **Instead:** this has passband have smooth response and ripples in the stopband.
- Exhibits maximally flat passband response and equi-ripple stopband
- **Cheby2 in MATLAB**

\[|\mathcal{H}(\omega)|^2 = 1 - |\mathcal{H}(1/\omega)|^2 = \frac{\epsilon^2C_n^2(1/\omega)}{1 + \epsilon^2C_n^2(1/\omega)} \]

Where: \(H \) is the Chebyshev filter system from before

- Passband behavior, especially for small \(\omega \), is **better** than Chebyshev
- Smallest transition band of the 3 filters (Butter, Cheby, Cheby2)
- Less time-delay (or phase loss) than that of the Chebyshev
- Both needs the **same order** \(n \) to meet a set of specifications.
- $$ (or number of elements): Cheby < Inverse \text{ Chebyshev} < \text{Butterworth} \) (of the same performance [not order])
Other Filter Types:
Elliptic Filters (or Cauer) Filters

- Allow **ripple** in **both** the passband and the stopband,
 - we can achieve **tighter** transition band

\[
|H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 R_n^2(\omega)}},
\]

Where:
- \(R_n \) is the \(n \)-th order Chebyshev rational function determined from a given ripple spec.
- \(\epsilon \) controls the ripple

- **Most efficient** (\(\eta \))
 - the **largest ratio** of the passband gain to stopband gain
 - **or** for a given ratio of passband to stopband gain, it requires the **smallest transition band**

- **in MATLAB:** `ellipord` followed by `ellip`

In Summary

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Passband Ripple</th>
<th>Stopband Ripple</th>
<th>Transition Band</th>
<th>MATLAB Design Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterworth</td>
<td>No</td>
<td>No</td>
<td>Loose</td>
<td><code>butter</code></td>
</tr>
<tr>
<td>Chebyshev</td>
<td>Yes</td>
<td>No</td>
<td>Tight</td>
<td><code>cheby</code></td>
</tr>
<tr>
<td>Chebyshev Type II</td>
<td>No</td>
<td>Yes</td>
<td>Tight</td>
<td><code>cheby2</code></td>
</tr>
<tr>
<td>(Inverse Chebyshev)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliptic</td>
<td>Yes</td>
<td>Yes</td>
<td>Tightest</td>
<td><code>ellip</code></td>
</tr>
</tbody>
</table>