Sampling & Data Acquisition & Antialiasing Filters

ELEC 3004: **Digital Linear Systems** Signals & Controls
Dr. Surya Singh

Lecture 3

elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/ March 18, 2014

Lecture Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-Mar</td>
<td>Introduction & Systems Overview</td>
</tr>
<tr>
<td></td>
<td>6-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>2</td>
<td>11-Mar</td>
<td>Signals as Vectors & Systems as Maps</td>
</tr>
<tr>
<td></td>
<td>13-Mar</td>
<td>Signals</td>
</tr>
<tr>
<td>3</td>
<td>18-Mar</td>
<td>Sampling & Data Acquisition & Antialiasing Filters</td>
</tr>
<tr>
<td></td>
<td>20-Mar</td>
<td>Discrete Signals</td>
</tr>
<tr>
<td></td>
<td>25-Mar</td>
<td>Filter Analysis & Filter Design</td>
</tr>
<tr>
<td></td>
<td>27-Mar</td>
<td>Filters</td>
</tr>
<tr>
<td>4</td>
<td>1-Apr</td>
<td>Digital Filters</td>
</tr>
<tr>
<td></td>
<td>3-Apr</td>
<td>Digital Filters</td>
</tr>
<tr>
<td></td>
<td>5-Apr</td>
<td>Convolution & FT & DFT</td>
</tr>
<tr>
<td></td>
<td>7-Apr</td>
<td>Frequency Response</td>
</tr>
<tr>
<td></td>
<td>8-Apr</td>
<td>Introduction to Control</td>
</tr>
<tr>
<td></td>
<td>1-May</td>
<td>Feedback</td>
</tr>
<tr>
<td>5</td>
<td>6-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td></td>
<td>8-May</td>
<td>Digital Control</td>
</tr>
<tr>
<td>6</td>
<td>13-May</td>
<td>Stability of Digital Systems</td>
</tr>
<tr>
<td></td>
<td>15-May</td>
<td>Stability</td>
</tr>
<tr>
<td>7</td>
<td>20-May</td>
<td>State-Space</td>
</tr>
<tr>
<td></td>
<td>22-May</td>
<td>Controllability & Observability</td>
</tr>
<tr>
<td>8</td>
<td>27-May</td>
<td>PID Control & System Identification</td>
</tr>
<tr>
<td></td>
<td>29-May</td>
<td>Digital Control System Hardware</td>
</tr>
<tr>
<td>9</td>
<td>3-Jun</td>
<td>Applications in Industry & Information Theory & Communications</td>
</tr>
<tr>
<td>10</td>
<td>5-Jun</td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>

© 2014 School of Information Technology and Electrical Engineering at The University of Queensland
Then a System is a **MATRIX**

\[
\begin{bmatrix}
 y[1] \\
 y[2] \\
 \vdots \\
 y[M]
\end{bmatrix} = \begin{bmatrix}
 D_{11} & D_{12} & \cdots & D_{1N} \\
 D_{21} & D_{22} & \cdots & D_{2N} \\
 \vdots & \vdots & \ddots & \vdots \\
 D_{M1} & D_{M2} & \cdots & D_{MN}
\end{bmatrix}
\begin{bmatrix}
 u[1] \\
 u[2] \\
 \vdots \\
 u[N]
\end{bmatrix}.
\]

\[
y[i] = \sum_j D_{ij} u[j].
\]
Recall From Last Time …
Classifications of Systems

1. Linear and nonlinear systems
2. Constant-parameter and time-varying-parameter systems
3. Instantaneous (memoryless) and dynamic (with memory) systems
4. Causal and noncausal systems
5. Continuous-time and discrete-time systems
6. Analog and digital systems
7. Invertible and noninvertible systems
8. Stable and unstable systems

Causality:
Causal (physical or nonanticipative) systems

• Is one for which the output at any instant \(t_0 \) depends only on the value of the input \(x(t) \) for \(t \leq t_0 \). Ex:
\[
\begin{align*}
 u(t) &= x(t - 2) \Rightarrow \text{causal} \\
 u(t) &= x(t - 2) + x(t + 2) \Rightarrow \text{noncausal}
\end{align*}
\]

• A “real-time” system must be causals
 – How can it respond to future inputs?
• A prophetic system: knows future inputs and acts on it (now)
 – The output would begin before \(t_0 \)
• In some cases Noncausal maybe modelled as causal with delay
• Noncausal systems provide an upper bound on the performance of causal systems
Causality:
Looking at this from the output’s perspective…

- **Causal** = The output before some time \(t \) does not depend on the input after time \(t \).

Given: \(y(t) = F(u(t)) \)
For:
\(\bar{u}(t) = u(t), \forall 0 \leq t < T \) or \([0, T)\)

Then for a \(T > 0 \):
\[\rightarrow \bar{y}(t) = y(t), \forall 0 \leq t < T \]

A system with a memory

- Where past history (or derivative states) are **relevant** in determining the response

Ex:
- RC circuit: Dynamical
 - Clearly a function of the “capacitor’s past” (initial state) and
 - Time! (charge / discharge)
- R circuit: is memoryless \(\neg \) the output of the system
 (recall \(V=IR \)) at some time \(t \) only depends on the input at time \(t \)

Lumped/Distributed
- Lumped: Parameter is constant through the process & can be treated as a “point” in space
- Distributed: System dimensions \(\neq \) small over signal
 - Ex: waveguides, antennas, microwave tubes, etc.
Linear Time Invariant

\[u(t) \xrightarrow{\text{LTI}} y(t) = u(t) * h(t) = F(\delta(t)) \]

- Linear & Time-invariant (of course - tautology!)
- Impulse response: \(h(t) = F(\delta(t)) \)
- Why?
 - Since it is linear the output response \(y(t) \) to any input \(x(t) \) is:
 \[
 x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \, d\tau \\
 y(t) = F\left[\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \, d\tau\right] = \int_{-\infty}^{\infty} x(\tau) F(\delta(t-\tau)) \, d\tau \\
 h(t-\tau) = F(\delta(t-\tau)) \\
 \Rightarrow y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) \, d\tau = x(t) * h(t)
 \]

- The output of any continuous-time LTI system is the **convolution** of input \(u(t) \) with the impulse response \(F(\delta(t)) \) of the system.

Linear Dynamic [Differential] System

\(\equiv \) LTI systems for which the input & output are linear ODEs

\[
a_0y + a_1 \frac{dy}{dt} + \cdots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \cdots + b_m \frac{d^m x}{dt^m}
\]

Laplace:

\[
a_0Y(s) + a_1 sY(s) + \cdots + a_n s^n Y(s) = b_0 X(s) + b_1 sX(s) + \cdots + b_m s^m X(s) \\
A(s)Y(s) = B(s)X(s)
\]

- Total response = Zero-input response + Zero-state response

\begin{align*}
\text{Initial conditions} & \quad \text{External Input}
\end{align*}
Linear Systems and ODE’s

- Linear system described by differential equation

\[a_0 \frac{dy}{dt} + a_1 \frac{d^2y}{dt^2} + \cdots + a_n \frac{d^ny}{dt^n} = b_0 \frac{dx}{dt} + b_1 \frac{d^2x}{dt^2} + \cdots + b_m \frac{d^mx}{dt^m} \]

- Which using Laplace Transforms can be written as

\[a_0 Y(s) + a_1 sY(s) + \cdots + a_n s^n Y(s) = b_0 X(s) + b_1 sX(s) + \cdots + b_m s^m X(s) \]

\[A(s)Y(s) = B(s)X(s) \]

where \(A(s) \) and \(B(s) \) are polynomials in \(s \)

Unit Impulse Response

- \(\delta(t) \): Impulsive excitation
- \(h(t) \): characteristic mode terms

Ex:

Determine the unit impulse response \(h(t) \) for the system specified by the equation

\[(s^2 + 3s + 2) y(t) = 2x(t) \]

This is a second-order system \(\left(
\begin{array}{c}
 2 \\
 3 \\
 2 \\
\end{array}
\right) \) with the characteristic polynomial

\[s^2 + 3s + 2 = (s + 1)(s + 2) \]

The characteristic roots of this system are \(s = -1 \) and \(s = -2 \). Therefore

\[\delta(t) = e^{-t} + e^{-2t} \]

Differentiation of the equation yields

\[\delta(t) = -e^{-t} - 2e^{-2t} \]

The initial conditions are given by \(\delta(t) = 2 \) for \(t \rightarrow \infty \)

\[\delta(t) = 1 \]

Solving the simultaneous equations yields

\[c_1 = 1 \quad \text{and} \quad c_2 = -1 \]

Therefore

\[\delta(t) = e^{-t} - e^{-2t} \]

Moreover, according to Eq. (2.26), \(\Phi(2) = 2 \) so that

\[F(\Phi_1(t)) = \Phi_2(t) = \delta(t) = e^{-t} + e^{-2t} \]

Also, in this case, \(\Phi_0 = 0 \) (the second-order term is absent in \(F(t) \)). Therefore

\[h(t) = \Phi(t) \Phi(t) \delta(t) = \left(e^{-t} + e^{-2t} \right) \delta(t) \]
System Models

- Various things – all the same!

<table>
<thead>
<tr>
<th>System</th>
<th>Variable Through Element</th>
<th>Integrated Through-Variable</th>
<th>Variable Across Element</th>
<th>Integrated Across-Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Current, i</td>
<td>Charge, q</td>
<td>Voltage difference, v_{21}</td>
<td>Flux linkage, λ_{21}</td>
</tr>
<tr>
<td>Mechanical translational</td>
<td>Force, F</td>
<td>Translational momentum, P</td>
<td>Velocity difference, ω_{21}</td>
<td>Displacement difference, y_{21}</td>
</tr>
<tr>
<td>Mechanical rotational</td>
<td>Torque, T</td>
<td>Angular momentum, h</td>
<td>Angular velocity difference, ω_{21}</td>
<td>Angular displacement difference, θ_{21}</td>
</tr>
<tr>
<td>Fluid</td>
<td>Fluid volumetric rate of flow, Q</td>
<td>Volume, V</td>
<td>Pressure difference, p_{21}</td>
<td>Pressure momentum, γ_{21}</td>
</tr>
<tr>
<td>Thermal</td>
<td>Heat flow rate, q</td>
<td>Heat energy, H</td>
<td>Temperature difference, δ_{21}</td>
<td></td>
</tr>
</tbody>
</table>

Circuits

\[
\frac{V_2(t)}{V_1(t)} = \frac{1}{R C s}
\]

\[
\frac{v_{out}}{v_{in}} = \frac{1}{C_1 C_2 R_1 R_2 s^2 + C_2 (R_1 + R_2) s + 1}
\]
Motors

5. DC motor, field-controlled, rotational actuator

\[\theta(s) \overset{V_f(s)}{\rightarrow} \frac{K_m}{s(Js + b)(Ljs + R_f)} \]

7. AC motor, two-phase control field, rotational actuator

\[\theta(s) \overset{V_c(s)}{\rightarrow} \frac{K_m}{s(rxs + 1)} \]
\[\tau = J/(b - m) \]
\[m = \text{slope of linearized torque-speed curve (normally negative)} \]

Mechanical Systems

15. Accelerometer, acceleration sensor

\[x_a(t) = y(t) - x_{a0}(t), \]
\[X_a(s) = -s^2 \]
\[X_{a0}(s) = s^2 + (b/M)s + k/M \]

For low-frequency oscillations, where \(\omega < \omega_n \),

\[\frac{X_a(j\omega)}{X_{a0}(j\omega)} = \frac{-\omega^2}{k/M} \]
Thermal Systems

16. Thermal heating system

\[\mathcal{F}(s) = \frac{1}{C_s + (QS + 1/R_s)}, \] where

- \(\mathcal{F} = \mathcal{F}_a - \mathcal{F}_b = \) temperature difference due to thermal process
- \(C_s = \) thermal capacitance
- \(Q = \) fluid flow rate = constant
- \(S = \) specific heat of water
- \(R_s = \) thermal resistance of insulation
- \(q(s) = \) transform of rate of heat flow of heating element

First Order Systems

First order systems

\[ay' + by = 0 \quad (with \ a \neq 0) \]

righthand side is zero:
- called autonomous system
- solution is called natural or unforced response

can be expressed as

\[Ty' + y = 0 \quad \text{or} \quad y' + ry = 0 \]

where
- \(T = a/b \) is a time (units: seconds)
- \(r = b/a = 1/T \) is a rate (units: 1/sec)
First Order Systems

Solution by Laplace transform

take Laplace transform of $Ty' + y = 0$ to get

$$T(sY(s) - y(0)) + Y(s) = 0$$

solve for $Y(s)$ (algebraic)

$$Y(s) = \frac{T y(0)}{sT + 1} = \frac{y(0)}{s + 1/T}$$

and so $y(t) = y(0)e^{-t/T}$

First Order Systems

solution of $Ty' + y = 0$: $y(t) = y(0)e^{-t/T}$

if $T > 0$, y decays exponentially

- T gives time to decay by $e^{-1} \approx 0.37$
- $0.693T$ gives time to decay by half ($0.693 = \log 2$)
- $4.6T$ gives time to decay by 0.01 ($4.6 = \log 100$)

if $T < 0$, y grows exponentially

- $|T|$ gives time to grow by $e \approx 2.72$
- $0.693|T|$ gives time to double
- $4.6|T|$ gives time to grow by 100
First Order Systems

Examples

simple RC circuit:

\[R \quad C \quad v \]

+ \quad \text{circuit equation: } RCv' + v = 0

- \quad \text{solution: } v(t) = v(0)e^{-t/(RC)}

population dynamics:
- \(y(t) \) is population of some bacteria at time \(t \)
- growth (or decay if negative) rate is \(y' = by - dy \) where \(b \) is birth rate, \(d \) is death rate
- \(y(t) = y(0)e^{(b-d)t} \) (grows if \(b > d \); decays if \(b < d \))

Second Order Systems

Second order systems

\[ay'' + by' + cy = 0 \]

assume \(a > 0 \) (otherwise multiply equation by \(-1\))

solution by Laplace transform:

\[a(s^2Y(s) - sy(0) - y'(0)) + b(sY(s) - y(0)) + cY(s) = 0 \]

solve for \(Y \) (just algebraic)

\[Y(s) = \frac{asy(0) + ay'(0) + by(0)}{as^2 + bs + c} = \frac{\alpha s + \beta}{as^2 + bs + c} \]

where \(\alpha = ay(0) \) and \(\beta = ay'(0) + by(0) \)
Second Order Systems

so solution of $ay'' + by' + cy = 0$ is

$$y(t) = \mathcal{L}^{-1} \left(\frac{\alpha s + \beta}{\alpha s^2 + \beta s + c} \right)$$

- $\chi(s) = \alpha s^2 + \beta s + c$ is called characteristic polynomial of the system
- form of $y = \mathcal{L}^{-1}(Y)$ depends on roots of characteristic polynomial χ
- coefficients of numerator $\alpha s + \beta$ come from initial conditions

Ex: RC Circuit

Example: second-order RC circuit

at $t = 0$, the voltage across each capacitor is 1V
- for $t \geq 0$, y satisfies LCCODE (from page 2-18)
 $$y'' + 3y' + y = 0$$
- initial conditions:
 $$y(0) = 1, \quad y'(0) = 0$$
 (at $t = 0$, voltage across righthand capacitor is one, current through righthand resistor is zero)
Sampling!

Not this type of sampling …

SEMINAR REFRESHMENTS!

Caffeine

More Caffeine

Sugar

Carbon

Sugars

Sugars with sugar

Caffeine inside the embedded in the carbs

Nothing says "We are confident this seminar will be intellectually stimulating for you" like a table full of things to help you stay awake.

JURIS G. CHAM © 2013
WWW.PHBCOMICS.COM
This type of sampling…

Analog vs Digital

- Analog Signal: An analog or analogue signal is any variable signal continuous in both time and amplitude

- Digital Signal: A digital signal is a signal that is both discrete and quantized

E.g. Music stored in a CD: 44,100 Samples per second and 16 bits to represent amplitude
Digital Signal

- Representation of a signal against a discrete set

- The set is fixed in by computing hardware

$$ s \in \mathbb{Z} $$

- Can be scaled or normalized … but is limited

$$ s \in \mathbb{Z}(0, \ldots, 2^{16}) $$

- Time is also discretized

$$ s' \in \frac{\mathbb{Z}(0, \ldots, 2^{16})}{2^{16}} $$

Representation of Signal

- Time Discretization

- Digitization
Signal: A carrier of (desired) information [1]

- Need **NOT** be electrical:
 - Thermometer
 - Clock hands
 - Automobile speedometer

- Need **NOT** always being given
 - “Abnormal” sounds/operations
 - Ex: “pitch” or “engine hum” during machining as an indicator for feeds and speeds

Signal: A carrier of (desired) information [2]

- Electrical signals
 - Voltage
 - Current

- **Digital signals**
 - **Convert analog electrical signals to an appropriate digital electrical message**
 - **Processing by a microcontroller or microprocessor**
Ex: Current-to-voltage conversion

- simple: Precision Resistor
 \[i = \frac{V_{\text{measured}}}{R_{\text{known}}} \]
- better: Use an “op amp”

Mathematics of Sampling and Reconstruction

Impulse train
\[\delta_T(t) = \sum \delta(t - n\Delta t) \]
Sampling frequency \(f_s = 1/\Delta t \)
Cut-off frequency = \(f_c \)
Mathematical Model of Sampling

- $x(t)$ multiplied by impulse train $\delta T(t)$

\[x_c(t) = x(t)\delta_T(t) = x(t)[\delta(t) + \delta(t - \Delta t) + \delta(t - 2\Delta t) + \cdots] = \sum_n x(n\Delta t)\delta(t - n\Delta t) \]

- $x_c(t)$ is a train of impulses of height $x(t)|_{t=n\Delta t}$
Discrete Time Signal

- Image a signal...

Discrete Time Signals

- Digitization helps beat the Noise!
Discrete Time Signals

- But only so much…

Discrete Time Signals

- Can make control tricky!
Signal Manipulations

- **Shifting**
 \[y(n) = x(n - n_0) \]

- **Reversal**
 \[y(n) = x(-n) \]

- **Time Scaling**
 (Down Sampling)
 \[y(M) = x(Mn) \]
 (Up Sampling)
 \[y(n) = x\left(\frac{n}{N}\right) \]

Frequency Domain Analysis of Sampling

- Consider the case where the DSP performs no filtering operations
 - i.e., only passes \(xc(t) \) to the reconstruction filter
- To understand we need to look at the frequency domain
- Sampling: we know
 - multiplication in time \(\equiv \) convolution in frequency
 - \(F\{x(t)\} = X(w) \)
 - \(F\{\delta T(t)\} = \sum \delta(w - 2\pi n/\Delta t) \),
 - i.e., an impulse train in the frequency domain
Frequency Domain Analysis of Sampling

- In the frequency domain we have

\[
X_c(w) = \frac{1}{2\pi} \left(X(w) * \frac{2\pi}{\Delta t} \sum_n \delta\left(w - \frac{2\pi n}{\Delta t}\right)\right)
\]

\[
= \frac{1}{\Delta t} \sum_n X\left(w - \frac{2\pi n}{\Delta t}\right)
\]

- Let's look at an example
 - where \(X(w)\) is triangular function
 - with maximum frequency \(w_m\) rad/s
 - being sampled by an impulse train, of frequency \(w_s\) rad/s

- Fourier transform of original signal \(X(\omega)\)
 (signal spectrum)

- Fourier transform of impulse train \(\delta_T(\omega/2\pi)\) (sampling signal)

Original spectrum convolved with spectrum of impulse train
In this example it was possible to recover the original signal from the discrete-time samples.

But is this always the case?

Consider an example where the sampling frequency w_s is reduced:

- i.e., Δt is increased.
Due to overlapping replicas (aliasing), the reconstruction filter cannot recover the original spectrum. The effect of aliasing is that higher frequencies of "alias to" (appear as) lower frequencies.
Sampling Theorem

- The Nyquist criterion states:

 To prevent aliasing, a bandlimited signal of bandwidth \(w_B \) rad/s must be sampled at a rate greater than \(2w_B \) rad/s

 \[-w_s > 2w_B\]

 Note: this is a > sign not a ≥

 Also note: Most real world signals require band-limiting with a lowpass (anti-aliasing) filter

Time Domain Analysis of Sampling

- Frequency domain analysis of sampling is very useful to understand
 - sampling \((X(w)\sum \delta(w - 2\pi n/Δt))\)
 - reconstruction (lowpass filter removes replicas)
 - aliasing (if \(w_s ≤ 2w_B\))

- Time domain analysis can also illustrate the concepts
 - sampling a sinewave of increasing frequency
 - sampling images of a rotating wheel
A signal of the original frequency is reconstructed

A signal with a reduced frequency is recovered, i.e., the signal is aliased to a lower frequency (we recover a replica)
Sampling < Nyquist → Aliasing

Nyquist is not enough …
A little more than Nyquist is not enough …

1 Hz Sin Wave: \(\sin(2\pi t) \) \(\rightarrow\) 4 Hz Sampling

Sampled Spectrum \(w_s > 2w_m \)

Sampled Spectrum \(w_s < 2w_m \)

Original and replica spectrums overlap
Lower frequency recovered \((w_s - w_m) \)
Temporal Aliasing

90° clockwise rotation/frame perceived

270° clockwise rotation/frame (90°) anticlockwise rotation perceived i.e., aliasing

Require LPF to ‘blur’ motion

Time Domain Analysis of Reconstruction

- Frequency domain: multiply by ideal LPF
 - ideal LPF: ‘rect’ function (gain Δt, cut off w_c)
 - removes replica spectrums, leaves original
- Time domain: this is equivalent to
 - convolution with ‘sinc’ function
 - as $F^{-1}\{\Delta t \ rect(w/w_c)\} = \Delta t w_c \ sinc(w_c t / \pi)$
 - i.e., weighted sinc on every sample
- Normally, $w_c = w_s/2$

$$x_r(t) = \sum_{n=\infty}^{\infty} x(n\Delta t)\Delta t w_c \ sinc\left(\frac{w_c(t-n\Delta t)}{\pi}\right)$$
Reconstruction

- Zero-Order Hold [ZOH]
Reconstruction

- Whittaker–Shannon interpolation formula

\[x(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \text{sinc} \left(\frac{t-nT}{T} \right) \]
Sampling and Reconstruction
Theory and Practice

- Signal is bandlimited to bandwidth WB
 - Problem: real signals are not bandlimited
 - Therefore, require (non-ideal) anti-aliasing filter
- Signal multiplied by ideal impulse train
 - problems: sample pulses have finite width
 - and not \otimes in practice, but sample & hold circuit
- Samples discrete-time, continuous valued
 - Problem: require discrete values for DSP
 - Therefore, require A/D converter (quantisation)
- Ideal lowpass reconstruction (‘sinc’ interpolation)
 - problems: ideal lowpass filter not available
 - Therefore, use D/A converter and practical lowpass filter
'staircase' output from D/A converter (ZOH)

Smooth output from reconstruction filter
Example: error due to signal quantisation

Original Signal | After Anti-aliasing LPF | After Sample & Hold

After Reconstruction LPF | After D/A | After A/D

Complete practical DSP system signals
Zero Order Hold (ZOH)

- **Impulse train sampling not realisable**
 - sample pulses have finite width (say nanosecs)
- **This produces two effects,**
 - Impulse train has sinc envelope in frequency domain
 - impulse train is square wave with small duty cycle
 - Reduces amplitude of replica spectrums
 - smaller replicas to remove with reconstruction filter
- **Averaging of signal during sample time**
 - effective low pass filter of original signal
 - can reduce aliasing, but can reduce fidelity
 - negligible with most S/H
Aliasing: Another view of this

Aliasing - through sampling, two entirely different analog sinusoids take on the same “discrete time” identity

For $f[k]=\cos\Omega k$, $\Omega=\omega T$:

The period has to be less than F_h (highest frequency):

Thus:

$0 \leq F \leq \frac{F_s}{2}$

ω_f: aliased frequency: $\omega T = \omega_f T + 2\pi m$
Practical Anti-aliasing Filter

- Non-ideal filter
 - $w_c = w_s / 2$
- Filter usually 4th – 6th order (e.g., Butterworth)
 - so frequencies $> w_c$ may still be present
 - not higher order as phase response gets worse
- Luckily, most real signals
 - are lowpass in nature
 - signal power reduces with increasing frequency
 - e.g., speech naturally bandlimited (say < 8KHz)
 - Natural signals have a (approx) 1/f spectrum
 - so, in practice aliasing is not (usually) a problem

Amplitude spectrum of original signal

- Fourier transform of sampling signal (pulses have finite width)
 - $w_s = 2\pi / \Delta t$
 - $4\pi / \Delta t$
 - sinc envelope
 - Zero at harmonics
 - 1/duty cycle

- Fourier transform of sampled signal
 - $1 / \Delta t$
 - w

Original Replica 1 Replica 2
Practical Sampling

- Sample and Hold (S/H)
 1. takes a sample every Δt seconds
 2. holds that value constant until next sample
- Produces ‘staircase’ waveform, $x(n\Delta t)$

![Sample and Hold Diagram](sample_diagram.png)

Quantisation

- Analogue to digital converter (A/D)
 - Calculates nearest binary number to $x(n\Delta t)$
 - $x_q[n] = q(x(n\Delta t))$, where $q()$ is non-linear rounding fctn
 - output modeled as $x_q[n] = x(n\Delta t) + e[n]$
- Approximation process
 - therefore, loss of information (unrecoverable)
 - known as ‘quantisation noise’ ($e[n]$)
 - error reduced as number of bits in A/D increased
 - i.e., Δx, quantisation step size reduces
 - $|e[n]| \leq \frac{\Delta x}{2}$
Input-output for 4-bit quantiser
(two’s compliment)

\[\Delta x = \frac{2A}{2^m - 1} \]

where \(A \) = max amplitude
\(m \) = no. quantisation bits

<table>
<thead>
<tr>
<th>Digital</th>
<th>Analogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 0111</td>
<td></td>
</tr>
<tr>
<td>6 0110</td>
<td></td>
</tr>
<tr>
<td>5 0101</td>
<td></td>
</tr>
<tr>
<td>4 0100</td>
<td></td>
</tr>
<tr>
<td>3 0011</td>
<td></td>
</tr>
<tr>
<td>2 0010</td>
<td></td>
</tr>
<tr>
<td>1 0001</td>
<td></td>
</tr>
<tr>
<td>0 0000</td>
<td>0000</td>
</tr>
<tr>
<td>-1 1111</td>
<td>1111</td>
</tr>
<tr>
<td>-2 1110</td>
<td>1110</td>
</tr>
<tr>
<td>-3 1101</td>
<td>1101</td>
</tr>
<tr>
<td>-4 1100</td>
<td>1100</td>
</tr>
<tr>
<td>-5 1011</td>
<td>1011</td>
</tr>
<tr>
<td>-6 1010</td>
<td>1010</td>
</tr>
<tr>
<td>-7 1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

\[\Delta x \text{ quantisation step size} \]

\[A = \text{max amplitude} \]
\[m = \text{no. quantisation bits} \]

Signal to Quantisation Noise

- To estimate SQNR we assume
 - \(e[n] \) is uncorrelated to signal and is a uniform random process
- assumptions not always correct!
 - not the only assumptions we could make…
- Also known a ‘Dynamic range’ \((R_D) \)
 - expressed in decibels (dB)
 - ratio of power of largest signal to smallest (noise)

\[R_D = 10 \log_{10} \left(\frac{P_{signal}}{P_{noise}} \right) \]
Dynamic Range

Need to estimate:

1. Noise power
 - uniform random process: \(P_{\text{noise}} = \Delta x^2/12 \)

2. Signal power
 - (at least) two possible assumptions
 1. sinusoidal: \(P_{\text{signal}} = A^2/2 \)
 2. zero mean Gaussian process: \(P_{\text{signal}} = \sigma^2 \)
 - Note: as \(\sigma \approx A/3 \): \(P_{\text{signal}} \approx A^2/9 \)
 - where \(\sigma^2 \) = variance, \(A \) = signal amplitude

Regardless of assumptions: \(R_D \) increases by 6dB for every bit that is added to the quantiser

1 extra bit halves \(\Delta x \)
i.e., \(20\log_{10}(1/2) = 6\text{dB} \)

Practical Reconstruction

Two stage process:

1. Digital to analogue converter (D/A)
 - zero order hold filter
 - produces ‘staircase’ analogue output

2. Reconstruction filter
 - non-ideal filter: \(w_c = w_r/2 \)
 - further reduces replica spectrums
 - usually 4\text{th} – 6\text{th} order e.g., Butterworth
 - for acceptable phase response
D/A Converter

- Analogue output $y(t)$ is
 - convolution of output samples $y(n\Delta t)$ with $h_{ZOH}(t)$

\[
y(t) = \sum_n y(n\Delta t)h_{ZOH}(t - n\Delta t)
\]

\[
h_{ZOH}(t) = \begin{cases}
1, & 0 \leq t < \Delta t \\
0, & \text{otherwise}
\end{cases}
\]

\[
H_{ZOH}(w) = \Delta t \exp\left(\frac{-jw\Delta t}{2}\right) \frac{\sin(w\Delta t / 2)}{w\Delta t / 2}
\]

D/A is lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required

Summary

- Theoretical model of Sampling
 - bandlimited signal (w_B)
 - multiplication by ideal impulse train ($w_s > 2w_B$)
 - convolution of frequency spectrums (creates replicas)
 - Ideal lowpass filter to remove replica spectrums
 - $wc = w_s / 2$
 - Sinc interpolation

- Practical systems
 - Anti-aliasing filter ($wc < w_s / 2$)
 - A/D (S/H and quantisation)
 - D/A (ZOH)
 - Reconstruction filter ($wc = w_s / 2$)

Don't confuse theory and practice!