Arduino Motor Shield (L298N) (SKU:DRI0009)

From Robot Wiki

Contents

- 1 Introduction
- 2 Diagram
- 3 Pin Allocation
- 4 Sample Code
 - 4.1 PWM Speed Control
 - 4.2 PLL Speed Control

Introduction

This motor shield allows Arduino to drive two channel DC motors. It uses a L298N chip which delivers output current up to 2A each channel. The speed control is achieved through conventional PWM which can be obtained from Arduino’s PWM output Pin 5 and 6. The enable/disable function of the motor control is signalled by Arduino Digital Pin 4 and 7.

The Motor shield can be powered directly from Arduino or from external power source. It is strongly encouraged to use external power supply to power the motor shield.

- Logic Control Voltage: 5V (From Arduino)
- Motor Driven Voltage: 4.8～35V (From Arduino or External Power Source)
- Logic supply current Iss: \(\leq 36mA \)
- Motor Driven current Io: \(\leq 2A \)
- Maximum power consumption: 25W (T=75°C)
- PWM、PLL Speed control mode
- Control signal level:

 High: \(2.3V \leq V_{in} \leq 5V \)
 Low: \(-0.3V \leq V_{in} \leq 1.5V \)

Diagram
Control Mode Selection Jumpers: The shield supports PWM and PLL (Phased Locked Loop) control modes. The PWM mode uses E1 and E2 to generate PWM signal. The PLL mode uses M1 and M2 to generate phase control signal.

Motor Terminal: Two DC motors are connected to blue motor terminals. The male header behind the terminals are the same as the motor terminals.
The motors are powered by external power supply when the motor current exceeds the limits provided from the Arduino. The switch between external and Arduino power is implemented by two jumpers.

- PWRIN: External Power
- VIN: Arduino Power

NOTE: When the motor shield is powered by external power source, make sure the external power source and Arduino have the same GND.

Control Signal Truth Table:

<table>
<thead>
<tr>
<th>E1</th>
<th>M1</th>
<th>E2</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>X</td>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>PWM</td>
<td>PWM Speed control</td>
<td>PWM</td>
<td>PWM Speed control</td>
</tr>
</tbody>
</table>
Note: *H* is High level ; *L* is Low level ; *PWM* is Pulse Width Modulation signal; *X* is any voltage level

Pin Allocation

The motors are powered by Arduino power supply

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital 4</td>
<td>Motor 2 Direction control</td>
</tr>
<tr>
<td>Digital 5</td>
<td>Motor 2 PWM control</td>
</tr>
<tr>
<td>Digital 6</td>
<td>Motor 1 PWM control</td>
</tr>
<tr>
<td>Digital 7</td>
<td>Motor 1 Direction control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital 4</td>
<td>Motor 2 Enable control</td>
</tr>
<tr>
<td>Digital 5</td>
<td>Motor 2 Direction control</td>
</tr>
<tr>
<td>Digital 6</td>
<td>Motor 1 Direction control</td>
</tr>
<tr>
<td>Digital 7</td>
<td>Motor 1 Enable control</td>
</tr>
</tbody>
</table>

Shield diagram (http://www.shieldlist.org/dfrobot/2a-motor)

Sample Code

PWM Speed Control

```c
//Arduino PWM Speed Control:
int E1 = 5;
int M1 = 4;
int E2 = 6;
```
```c
int M2 = 7;

void setup()
{
    pinMode(M1, OUTPUT);
    pinMode(M2, OUTPUT);
}

void loop()
{
    int value;
    for(value = 0 ; value <= 255; value+=5)
    {
        digitalWrite(M1, HIGH);
        digitalWrite(M2, HIGH);
        analogWrite(E1, value); //PWM Speed Control
        analogWrite(E2, value); //PWM Speed Control
        delay(30);
    }
}
```

PLL Speed Control

```c
//Arduino PLL Speed Control:
int E1 = 4;
int M1 = 5;
int E2 = 7;
int M2 = 6;

void setup()
{
    pinMode(M1, OUTPUT);
    pinMode(M2, OUTPUT);
}

void loop()
{
    int value;
    for(value = 0 ; value <= 255; value+=5)
    {
        digitalWrite(M1, HIGH);
        digitalWrite(M2, HIGH);
        analogWrite(E1, value); //PLL Speed Control
        analogWrite(E2, value); //PLL Speed Control
        delay(30);
    }
}
```


Categories: Product Manual | DRI Series | Motor Controllers | Shields

- This page was last modified on 19 April 2012, at 12:30.
- This page has been accessed 101,161 times.