Time Domain **Analysis** of Continuous Time Systems

ELEC 3004: **Systems**: Signals & Controls
Dr. Surya Singh

Lecture 7

elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/
March 20, 2013

Announcements:

- Assignment 1 is up on Platypus!
 - Due at the end of next week!
 - Next week’s tutorial sessions are Q&A meetings

Lab 1:
- Don’t forget the Pre-Lab
- Extra Session Needed ????

- Space Audit this **Friday** and next **Wednesday**
 - Sounds like an ideal time for a **pop-quiz**
Today:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>3-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>3</td>
<td>8-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>4</td>
<td>13-Mar</td>
<td>Signals & Signal Models</td>
</tr>
<tr>
<td>5</td>
<td>15-Mar</td>
<td>System Models</td>
</tr>
<tr>
<td>6</td>
<td>20-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td>7</td>
<td>22-Mar</td>
<td>System Behaviour & Stability</td>
</tr>
<tr>
<td>8</td>
<td>27-Mar</td>
<td>Signal Representation</td>
</tr>
<tr>
<td>9</td>
<td>29-Mar</td>
<td>Holiday</td>
</tr>
<tr>
<td>10</td>
<td>6-Apr</td>
<td>Frequency Response & Fourier Transform</td>
</tr>
<tr>
<td>11</td>
<td>10-Apr</td>
<td>Analog Filters</td>
</tr>
<tr>
<td>12</td>
<td>17-Apr</td>
<td>LTI Systems</td>
</tr>
<tr>
<td>13</td>
<td>19-Apr</td>
<td>Analog Filters</td>
</tr>
<tr>
<td>14</td>
<td>24-Apr</td>
<td>2-Dimensional Signals</td>
</tr>
<tr>
<td>15</td>
<td>1-May</td>
<td>Discrete-Time Signals</td>
</tr>
<tr>
<td>16</td>
<td>3-May</td>
<td>Discrete-Time Systems</td>
</tr>
<tr>
<td>17</td>
<td>10-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>18</td>
<td>12-May</td>
<td>Controllability & Observability</td>
</tr>
<tr>
<td>19</td>
<td>17-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td>20</td>
<td>19-May</td>
<td>Stability of Digital Systems</td>
</tr>
<tr>
<td>21</td>
<td>22-May</td>
<td>PID & Computer Control</td>
</tr>
<tr>
<td>22</td>
<td>24-May</td>
<td>Information Theory & Communications</td>
</tr>
<tr>
<td>23</td>
<td>29-May</td>
<td>Applications In Industry</td>
</tr>
<tr>
<td>24</td>
<td>31-May</td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>

Convolution & Properties

Convolution:

\[
f_1(t) * f_2(t) \equiv \int_{-\infty}^{\infty} f_1(\tau)f_2(t-\tau) \, d\tau
\]

Properties:

- **Commutative:** \(f_1(t) * f_2(t) = f_2(t) * f_1(t) \)
- **Distributive:** \(f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t) \)
- **Associative:** \(f_1(t) * [f_2(t) * f_3(t)] = [f_1(t) * f_2(t)] * f_3(t) \)
- **Shift:**

 if \(f_1(t) * f_2(t) = c(t) \), then \(f_1(t-T) * f_2(t) = f_1(t-T) * f_2(t) = c(t-T) \)
- **Identity (Convolution with an Impulse):**

 \(f(t) * \delta(t) = f(t) \)
- **Total Width:**

 ![Impulse Response Diagram](image)

Based on Lathi, SPS, Sec 2.4-1
Convolution & Properties [II]

- Convolution systems are \textbf{linear}:
 \[h \ast (\alpha u_1 + \beta u_2) = \alpha(h \ast u_1) + \beta(h \ast u_2) \]

- Convolution systems are \textbf{causal}: the output \(y(t) \) at time \(t \) depends only on past inputs

- Convolution systems are \textbf{time-invariant}
 (if we shift the signal, the output similarly shifts)

\[\tilde{u}(t) = \begin{cases} 0 & t < T \\ \omega(t-T) & t \geq 0 \end{cases} \]
\[\tilde{y}(t) = \begin{cases} 0 & t < T \\ y(t-T) & t \geq 0 \end{cases} \]

Convolution & Properties [III]

- Composition of convolution systems corresponds to:
 - multiplication of transfer functions
 - convolution of impulse responses

\begin{center}
\begin{tikzpicture}
 \node[draw] (A) at (0,0) {A};
 \node[draw] (B) at (2,0) {B};
 \node (u) at (-1,0) {u};
 \node (y) at (3,0) {y};
 \draw[->] (u) -- (A);
 \draw[->] (A) -- (B);
 \draw[->] (B) -- (y);
 \node[draw] (BA) at (1,0) {BA};
 \node (u2) at (-1,0) {u};
 \node (y2) at (3,0) {y};
 \draw[->] (u2) -- (BA);
 \draw[->] (BA) -- (y2);
\end{tikzpicture}
\end{center}

- Thus:
 - We can manipulate block diagrams with transfer functions as if they were simple gains
 - convolution systems commute with each other
Convolution & Systems

• Convolution system with input u ($u(t) = 0$, $t < 0$) and output y:

 $$ y(t) = \int_0^t h(\tau)u(t-\tau) \, d\tau = \int_0^t h(t-\tau)u(\tau) \, d\tau $$

• abbreviated:

 $$ y = h * u $$

• in the frequency domain:

 $$ Y(s) = H(s)U(s) $$

Convolution & Feedback

• In the time domain:

 $$ y(t) = \int_0^t g(t-%C5%AE-%C3%89\tau)(u(\tau) - y(\tau)) \, d\tau $$

• In the frequency domain:

 $$ Y(s) = G(s)(U-Y) $$

 $$ \Rightarrow Y(s) = H(s)U(s) $$

 $$ H(s) = \frac{G(s)}{1 + G(s)} $$
Graphical Understanding of Convolution

For $c(\tau) = f * g(t) = \int_{-\infty}^{\infty} f(\tau) g(t-\tau) \, d\tau$:

1. Keep the function $f(\tau)$ fixed
2. Flip (invert) the function $g(\tau)$ about the vertical axis ($\tau=0$)
 = this is $g(-\tau)$
3. Shift this frame ($g(-\tau)$) along τ (horizontal axis) by t_0.
 = this is $g(t_0-\tau)$

For $c(t_0)$:
4. $c(t_0) =$ the area under the product of $f(\tau)$ and $g(t_0-\tau)$

5. Repeat this procedure, shifting the frame by different values (positive and negative) to obtain $c(t)$ for all values of t.

Graphical Understanding of Convolution (Ex)
Recall the Root Locus

- We know that under feedback gain, the poles of the closed-loop system move
 - The root locus tells us where they go!
 - We can solve for this analytically*

![Root Locus Diagram]

- Root loci can be plotted for all sorts of parameters, not just gain!

The Root Locus

- We often care about the effect of increasing gain of a control compensator design:

\[
\frac{y}{r} = \frac{kCH}{1 + kCH}
\]

Multiplying by denominator:

\[
\frac{y}{r} = \frac{kC_nH_n}{C_dH_d + kCnHn}
\]

![Root Locus Diagram with Control System]
The root locus

- Pole positions change with increasing gain
 - The trajectory of poles on the pole-zero plot with changing k is called the “root locus”
 - This is sometimes quite complex

- (In practice you’d plot these with computers)

Root Locus Drawing Rules

1. The root locus is symmetric with respect to the real axis.
2. The root loci start from n poles p_i (when $K = 0$) and approach the n zeros (m finite zeros z_j and $n - m$ infinite zeros when $K \to \infty$).
3. The root locus includes all points on the real axis to the left of an odd number of open-loop real poles and zeros.
4. As $K \to \infty$, $n - m$ branches of the root-locus approach asymptotically $n - m$ straight lines (called asymptotes) with angles

$$\theta = \frac{(2k + 1)180^\circ}{n - m}, \quad k = 0, \pm 1, \pm 2, \ldots$$

and the starting point of all asymptotes is on the real axis at

$$\kappa = \frac{\sum_{i=1}^{n} p_i - \sum_{j=1}^{m} z_j}{n - m} = \frac{\sum \text{poles} - \sum \text{zeros}}{n - m}.$$
5. The **breakaway points** (where the root loci meet and split away, usually on real axis) and the **breakin points** (where the root loci meet and enter the real axis) are among the roots of the equation: $\frac{dK(s)}{ds} = 0$. (On the real axis, only those roots that satisfy Rule 3 are breakaway or breakin points.)

6. The **departure angle** ϕ_k (from a pole, p_k) is given by

$$\phi_k = \sum_{i=1}^{m} \angle(p_k - z_i) - \sum_{j=1, j \neq k}^{n} \angle(p_k - p_j) \pm 180^\circ.$$

(In the case p_k is l repeated poles, the departure angle becomes ϕ_k/l.)

The **arrival angle** ψ_k (at a zero, z_k) is given by

$$\psi_k = - \sum_{i=1, i \neq k}^{m} \angle(z_k - z_i) + \sum_{j=1}^{n} \angle(z_k - p_j) \pm 180^\circ.$$

(In the case z_k is l repeated zeros, the arrival angle becomes ψ_k/l.)

TABLE 5.1: Root locus rules: $0 \leq K \leq \infty$.

Recall (Lecture 5, Slide 10):

Linear Dynamic [Differential] System

\equiv LTI systems for which the input & output are linear ODEs

$$a_0 y + a_1 \frac{dy}{dt} + \cdots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \cdots + b_m \frac{d^m x}{dt^m}$$

Laplace:

$$a_0 Y(s) + a_1 s Y(s) + \cdots + a_n s^n Y(s) = b_0 X(s) + b_1 s X(s) + \cdots + b_m s^m X(s)$$

$$A(s) Y(s) = B(s) X(s)$$

- **Total response** $=$ **Zero-input response** $+$ **Zero-state response**

Initial conditions

External Input
Recall: Second Order Systems

Second order systems

\[ay'' + by' + cy = 0 \]

assume \(a > 0 \) (otherwise multiply equation by \(-1\))

solution by Laplace transform:

\[a(s^2Y(s) - ay(0) - y'(0)) + b(sY(s) - y(0)) + cY(s) = 0 \]

solve for \(Y \) (just algebra)

\[Y(s) = \frac{asy(0) + ay'(0) + by(0)}{as^2 + bs + c} = \frac{\alpha s + \beta}{as^2 + bs + c} \]

where \(\alpha = ay(0) \) and \(\beta = ay'(0) + by(0) \)

Second Order Systems

so solution of \(ay'' + by' + cy = 0 \) is

\[y(t) = \mathcal{L}^{-1} \left(\frac{\alpha s + \beta}{as^2 + bs + c} \right) \]

- \(\chi(s) = as^2 + bs + c \) is called characteristic polynomial of the system
- form of \(y = \mathcal{L}^{-1}(Y) \) depends on roots of characteristic polynomial \(\chi \)
- coefficients of numerator \(\alpha s + \beta \) come from initial conditions
Second Order Response

Three Types:
• I: Underdamped: \((0 < \xi < 1)\):

\[
C(t) = \frac{R(s)}{R(s)} = \frac{s^2 + \xi \omega_n s + \omega_n^2}{s(s + \xi \omega_n + j \omega_c)} = s + \omega_n \sqrt{1 - \xi^2}, \]

\[
X(t) = c(t) = e^{-\xi \omega_n t} \left[\cos(\omega_d t) + \frac{\xi}{\sqrt{1 - \xi^2}} \sin(\omega_d t) \right],
\]

\[
= 1 - e^{-\omega_c t} \sin\left(\omega_d t + \tan^{-1}\left(\frac{\xi}{\sqrt{1 - \xi^2}}\right)\right).
\]

Second Order Response

Three Types:
• II: Critically Damped: \((\xi = 1)\):

For a unit-step input, \(R(s) = 1/s\) and \(C(s)\) can be written

\[
C(s) = \frac{\omega_d^2}{s(s + \omega_d)^2}
\]

\[
|ln\left(\frac{\sin(\omega_d t)}{\sqrt{1 - \xi^2}}\right)| = \left|ln\left(\frac{\sin(\omega_d \sqrt{1 - \xi^2})}{\sqrt{1 - \xi^2}}\right)\right| = \omega_c t.
\]
Three Types:
- III: Over Damped: \((\zeta > 1)\)

For a unit-step input, \(R(s) = 1/s\) and \(C(s)\) can be written

\[
C(s) = \frac{\omega_n}{(s + \zeta \omega_n + \omega_n^2 - 1)(s + (\omega_n - \omega_n \sqrt{\zeta^2 - 1}))}
\]
Second Order Response
Envelope Curves

• Delay time, \(t_d \): The time required for the response to reach half the final value
• Rise time, \(t_r \): The time required for the response to rise from 10% to 90%
• Peak time, \(t_p \): The time required for the response to reach the first peak of the overshoot
• Maximum (percent) overshoot, \(M_p \):
 \[
 M_p = \frac{c(t_f) - c(\infty)}{c(\infty)} \times 100\%
 \]
• Settling time, \(t_s \): The time to be within 2-5% of the final value

Second Order Response
Unit Step Response Terms
Second Order Response
Seeing this on the S-plane

- The addition of a zero (an \(s \) term) gives a system with a shorter rise time, a shorter peak time, and a larger overshoot.

Second Order Response
The Case of **Adding a Zero**

- Increasing \(\tau \)
Second Order Response
The Case of Adding a Zero

- The addition of a pole (a $1/s$ term) slows down the system response and reduces the overshoot.

Example: Quarter-Car Model
Example: Quarter-Car Model (2)

\[
\begin{align*}
\ddot{x} + \frac{b}{m_1}(\dot{x} - \dot{y}) + \frac{k_1}{m_1}(x - y) + \frac{k_2}{m_1}x &= \frac{k_o}{m_1}r_s, \\
\ddot{y} + \frac{b}{m_2}(\dot{y} - \dot{x}) + \frac{k_1}{m_1}(y - x) &= 0.
\end{align*}
\]

\[
\begin{align*}
x^2X(s) + \frac{b}{m_1}(X(s) - Y(s)) + \frac{k_1}{m_1}(X(s) - Y(s)) + \frac{k_2}{m_1}X(s) &= \frac{k_o}{m_1}R(s), \\
x^2Y(s) + \frac{b}{m_2}(Y(s) - K(s)) + \frac{k_1}{m_1}(Y(s) - X(s)) &= 0.
\end{align*}
\]

\[
\begin{align*}
Y(s) &= \frac{\frac{k_o b}{m_1 m_2} \left(s^2 + \frac{k_o}{m_1} \right)}{s^4 + \left(\frac{k_o}{m_1} + \frac{k_o}{m_2} \right) s^2 + \left(\frac{k_o}{m_1} + \frac{k_o}{m_2} \right) s + \frac{k_o k_2}{m_1 m_2}},
\end{align*}
\]

Next Time…

- Stability
 - A performance measure which informs the extent to which all the poles of the transfer function have negative real parts
 - Aka:
 - Attempts to spontaneously disassemble itself

or

- Review:
 - Section 3.10 of Lathi
"Back to the Future": Laplace Review!

Recall dynamic responses

- Moving pole positions change system response characteristics

Faster

More Oscillatory

More damped

Pure integrator

“More unstable”
Dynamic compensation

- We can do more than just apply gain!
 - We can add dynamics into the controller that alter the open-loop response

\[
\begin{align*}
\text{compensator} & \quad \text{plant} \\
\begin{array}{c}
-u \\
\end{array} & \quad \begin{array}{c}
\frac{1}{s(s+1)} \\
\end{array} \\
\begin{array}{c}
 s+2 \\
\end{array} & \quad y \\
\end{align*}
\]

\[
\begin{align*}
\text{combined system} & \\
\begin{array}{c}
 s+2 \\
\end{array} & \quad y \\
\begin{array}{c}
 s(s+1) \\
\end{array} & \quad y \\
\end{align*}
\]

But what dynamics to add?

- Recognise the following:
 - A root locus starts at poles, terminates at zeros
 - “Holes eat poles”
 - Closely matched pole and zero dynamics cancel
 - The locus is on the real axis to the left of an odd number of poles (treat zeros as ‘negative’ poles)