State-Space: Controllability & Observability & Information Theory & More!

ELEC 3004: Systems: Signals & Controls
Dr. Surya Singh
(with material from Dr. Paul Pounds)

Lecture 24

elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/

© 2013 School of Information Technology and Electrical Engineering at The University of Queensland

State-Space: Made Clear

ELEC 3004: Systems: Signals & Controls
Dr. Surya Singh
(with material from Dr. Paul Pounds)

Lecture 24

elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/

© 2013 School of Information Technology and Electrical Engineering at The University of Queensland
Goals for the Week

Today:
• Review State-Space
• Quick introduction to Information Theory and Communications

Friday:
• Everything (Literally!)
Announcements:

• Practice Final Posted:
 – You’re welcome 😊
 – While it’s final #3 (real, supp, & prac):
 • It shares no questions with either the real or the supp.
 – Exam Review Session: June 7,

⇒ It is harder than the real thing!
(∵ its primarily to practice the material not the timing)

• Problem Set 2 Grading:
 – May 31 (& you get your grades during the semester)
 – June 7 (More time, better feedback??)

State-space control design
¿¿¿Que pasa????

• Design for discrete state-space systems is just like the continuous case.
 – Apply linear state-variable feedback:
 \[u = -Kx \]
 such that \(\det(zI - \Phi + \Gamma K) = \alpha_c(z) \)
 where \(\alpha_c(z) \) is the desired control characteristic equation

 Predictably, this requires the system controllability matrix

 \[C = [\Gamma \quad \Phi \Gamma \quad \Phi^2 \Gamma \quad \ldots \quad \Phi^{n-1} \Gamma] \]
 to be full-rank.
Solving State Space…

• Recall:

\[
\dot{x} = f(x, u, t)
\]

• For Linear Systems:

\[
\begin{align*}
\dot{x}(t) &= A(t) x(t) + B(t) u(t) \\
y(t) &= C(t) x(t) + D(t) u(t)
\end{align*}
\]

• For LTI:

\[
\begin{align*}
\rightarrow \dot{x} &= Ax + Bu \\
\rightarrow y &= Cx + Du
\end{align*}
\]

Solving State Space

• In the conventional, frequency-domain approach the differential equations are converted to transfer functions as soon as possible
 – The dynamics of a system comprising several subsystems is obtained by combining the transfer functions!

• With the state-space methods, on the other hand, the description of the system dynamics in the form of differential equations is retained throughout the analysis and design.
State-transition matrix $\Phi(t)$

- Describes how the state $x(t)$ of the system at some time t evolves into (or from) the state $x(\tau)$ at some other time T.

$$x(t) = \Phi(t, \tau) x(\tau)$$

Solving State Space...

Time-invariant dynamics The simplest form of the general differential equation of the form (3.1) is the “homogeneous,” i.e., unforced equation

$$\dot{x} = Ax$$

where A is a constant k by k matrix. The solution to (3.2) can be expressed as

$$x(t) = e^{At}c$$

where e^{At} is the matrix exponential function

$$e^{At} = I + At + \frac{At^2}{2} + \frac{At^3}{3!} + \cdots$$

and c is a suitably chosen constant vector. To verify (3.3) calculate the derivative of $x(t)$

$$\frac{dx(t)}{dt} = \frac{d}{dt}(e^{At}c)$$

and, from the defining series (3.4),

$$\frac{d}{dt}(e^{At}) = A + A^2t + A^3\frac{t^2}{2!} + \cdots = A\left(I + At + A^2\frac{t^2}{2!} + \cdots\right) = Ae^{At}$$

Thus (3.5) becomes

$$\frac{dx(t)}{dt} = Ae^{At}c = Ax(t)$$
Solving State Space

which was to be shown. To evaluate the constant \(c \) suppose that at some time \(\tau \) the state \(x(\tau) \) is given. Then, from (3.3),

\[
x(\tau) = e^{At}c
\]

(3.6)

Multiplying both sides of (3.6) by the inverse of \(e^{At} \) we find that

\[
c = (e^{At})^{-1}x(\tau)
\]

Thus the general solution to (3.2) for the state \(x(t) \) at time \(t \), given the state \(x(\tau) \) at time \(\tau \), is

\[
x(t) = e^{At}x(\tau)
\]

(3.7)

The following property of the matrix exponential can readily be established by a variety of methods—the easiest perhaps being the use of the series definition (3.4)—

\[
e^{A(t_2-t_1)} = e^{At_1}e^{At_2}
\]

(3.8)

for any \(t_1 \) and \(t_2 \). From this property it follows that

\[
(e^{At})^{-1} = e^{-At}
\]

(3.9)

and hence that (3.7) can be written

\[
x(t) = e^{A(t-\tau)}x(\tau)
\]

(3.10)

Solving State Space

The matrix \(e^{At} \) is a special form of the state-transition matrix to be discussed subsequently.

We now turn to the problem of finding a "particular" solution to the nonhomogeneous, or "forced," differential equation (3.1) with \(A \) and \(B \) being constant matrices. Using the "method of the variation of the constant,"[1] we seek a solution to (3.1) of the form

\[
x(t) = e^{At}c(t)
\]

(3.11)

where \(c(t) \) is a function of time to be determined. Take the time derivative of \(x(t) \) given by (3.11) and substitute it into (3.1) to obtain:

\[
Ae^{At}c(t) + e^{At}c'(t) = Ae^{At}c(t) + Bu(t)
\]

or, upon cancelling the terms \(Ae^{At}c(t) \) and premultiplying the remainder by \(e^{-At} \),

\[
c'(t) = e^{-At}Bu(t)
\]

(3.12)

Thus the desired function \(c(t) \) can be obtained by simple integration (the mathematician would say "by a quadrature")

\[
c(t) = \int_{\tau}^{t} e^{-As}Bu(s) \, ds
\]

The lower limit \(\tau \) on this integral cannot as yet be specified, because we will need to put the particular solution together with the solution to the
Solving State Space

The homogeneous equation to obtain the complete (general) solution. For the present, let T be undefined. Then the particular solution, by (3.11), is

$$x(t) = e^{At} \int_{t}^{T} e^{-A\lambda} Bu(\lambda) \, d\lambda - e^{At} \int_{t}^{T} e^{-A\lambda} Bu(\lambda) \, d\lambda$$ \hspace{1cm} (3.13)

In obtaining the second integral in (3.13), the exponential $e^{-A\lambda}$, which does not depend on the variable of integration λ, was moved under the integral, and property (3.8) was invoked to write $e^{-A\lambda} - e^{A(T-t)}$.

The complete solution to (3.1) is obtained by adding the “complementary solution” (3.10) to the particular solution (3.13). The result is

$$x(t) = e^{At}x(\tau) + \int_{\tau}^{t} e^{A(t-\lambda)} Bu(\lambda) \, d\lambda$$ \hspace{1cm} (3.14)

We can now determine the proper value for lower limit τ on the integral. At $t = \tau$ (3.14) becomes

$$x(\tau) = x(\tau) + \int_{\tau}^{t} e^{A(t-\lambda)} Bu(\lambda) \, d\lambda$$ \hspace{1cm} (3.15)

Thus, the integral in (3.15) must be zero for any $u(\tau)$, and this is possible only if $T = \tau$. Thus, finally we have the complete solution to (3.1) when A and B are constant matrices

$$x(t) = e^{At}x(\tau) + \int_{\tau}^{t} e^{A(t-\lambda)} Bu(\lambda) \, d\lambda$$ \hspace{1cm} (3.16)

Solving State Space

This important relation will be used many times in the remainder of the book. It is worthwhile dwelling upon it. We note, first of all, that the solution is the sum of two terms: the first is due to the “initial” state $x(\tau)$ and the second—the integral—is due to the input $u(\tau)$ in the time interval $\tau \leq \lambda \leq t$ between the “initial” time τ and the “present” time t. The terms initial and present are enclosed in quotes to denote the fact that these are simply convenient definitions. There is no requirement that $t \geq \tau$. The relationship is perfectly valid even when $t \leq \tau$.

Another fact worth noting is that the integral term, due to the input, is a “convolution integral”: the contribution to the state $x(t)$ due to the input u is the convolution of u with $e^{At}B$. Thus the function $e^{AT}B$ has the role of the impulse response of the system whose output is $x(t)$ and whose input is $u(t)$.

If the output y of the system is not the state x itself but is defined by the observation equation

$$y = C x$$

then this output is expressed by

$$y(t) = C e^{At}x(\tau) + \int_{\tau}^{t} C e^{A(t-\lambda)} Bu(\lambda) \, d\lambda$$ \hspace{1cm} (3.17)
Solving State Space

and the impulse response of the system with \(y \) regarded as the output is
\[C e^{A(t-t_0)}B. \]

The development leading to (3.16) and (3.17) did not really require that \(B \) and \(C \) be constant matrices. By retracing the steps in the development it is readily seen that when \(B \) and \(C \) are time-varying, (3.16) and (3.17) generalize to

\[
x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^{t} e^{A(t-\lambda)}B(\lambda)u(\lambda) \, d\lambda \tag{3.18}
\]

and

\[
y(t) = C(t) e^{A(t-t_0)}x(t_0) + \int_{t_0}^{t} C(t) e^{A(t-\lambda)}B(\lambda)u(\lambda) \, d\lambda \tag{3.19}
\]

Digital State Space:
Recall from the Last Episode …

- Difference equations in state-space form:
 \[
 x[n+1] = Ax[n] + Bu[n] \\
y[n] = Cx[n] + Du[n]
 \]

- Where:
 - \(u[n], y[n] \): input & output (scalars)
 - \(x[n] \): state vector
Digital Control Law Design

In Chapter 2, we saw that the state-space description of a continuous system is given by (2.43),

\[x = f(x) + Gu, \]
(6.1)

and (2.44),

\[y = Hx. \]
(6.2)

We assume the control is applied from the computer by a ZOH as shown in Fig. 1.1. Therefore, (6.1) and (6.2) have an exact discrete representation as given by (2.57),

\[x(k+1) = \Phi x(k) + T u(k), \]
(6.3)
\[y(k) = Hx(k), \]

where

\[\Phi = e^{FT}, \]
(6.4a)
\[\Gamma = \int_0^\infty e^{F(t)}dG, \]
(6.4b)

Can you use this for more than Control?

• Yes
The Approach:

- Formulate the goal of control as an **optimization** (e.g. minimal impulse response, minimal effort, ...).
- You’ve already seen some examples of optimization-based design:
 - Used least-squares to obtain an FIR system which matched (in the least-squares sense) the desired frequency response.
 - Poles/zeros lecture: Butterworth filter

Frequency Response in State Space

\[H(s) = C(sI - A)^{-1}B + D = \frac{1}{101s^2 - 200s + 80} \]

Poles at \(0.55, 1.45,\)

Eigenvalues of \(A\):

1, 1, 1.45, 5.5

What are the (physical) implications?

Discrete Time Butterworth Filters

“Maximally-flat filter”. Sacrifice sharpness to have flat response in pass band and stop band.
“Maximally-flat filter”. Sacrifice sharpness to have flat response in pass band and stop band.
“Maximally-flat filter”. Sacrifice sharpness to have flat response in pass band and stop band.
“Maximally-flat filter”. Sacrifice sharpness to have flat response in pass band and stop band.
How?

- Constrained Least-Squares ...

One formulation: Given $x[0]$

$$
\begin{array}{ll}
\text{minimize} & \|\bar{u}\|^2, \\
\text{subject to} & x[N] = 0.
\end{array}
$$

where \(\bar{u} = \begin{bmatrix} u[0] \\ u[1] \\ \vdots \\ u[N] \end{bmatrix} \)

Note that

$$x[n] = A^n x[0] + \sum_{k=0}^{n-1} A^{n-1-k} Bu[k],$$

so this problem can be written as

$$
\begin{array}{ll}
\text{minimize} & \|A_{ls} x_{ls} - b_{ls}\|^2 \\
\text{subject to} & C_{ls} x_{ls} = D_{ls}.
\end{array}
$$

Shannon Information Theory

On the transmission of information over a noisy channel:

- An information source that produces a message
- A transmitter that operates on the message to create a signal which can be sent through a channel
- A channel, which is the medium over which the signal, carrying the information that composes the message, is sent
- A receiver, which transforms the signal back into the message intended for delivery
- A destination, which can be a person or a machine, for whom or which the message is intended
Next Time in Linear Systems ….

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td>1</td>
<td>1-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>1</td>
<td>3-Mar</td>
<td>Signals & Signal Models</td>
</tr>
<tr>
<td>2</td>
<td>6-Mar</td>
<td>System Models</td>
</tr>
<tr>
<td>3</td>
<td>13-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td>3</td>
<td>15-Mar</td>
<td>Sampling & Data Acquisition</td>
</tr>
<tr>
<td>3</td>
<td>15-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td>4</td>
<td>20-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>4</td>
<td>22-Mar</td>
<td>System Behaviour & Stability</td>
</tr>
<tr>
<td>4</td>
<td>25-Mar</td>
<td>Signal Representation</td>
</tr>
<tr>
<td>5</td>
<td>29-Mar</td>
<td>Stability</td>
</tr>
<tr>
<td>5</td>
<td>29-Mar</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>6</td>
<td>12-Apr</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>6</td>
<td>14-Apr</td>
<td>Transform</td>
</tr>
<tr>
<td>6</td>
<td>16-Apr</td>
<td>Discrete-Time Signals</td>
</tr>
<tr>
<td>6</td>
<td>18-Apr</td>
<td>Discrete-Time Systems</td>
</tr>
<tr>
<td>6</td>
<td>22-Apr</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>9</td>
<td>25-Apr</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>10</td>
<td>28-Apr</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>10</td>
<td>30-Apr</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>10</td>
<td>2-May</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>10</td>
<td>4-May</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>10</td>
<td>6-May</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>10</td>
<td>9-May</td>
<td>Infinite-Time Systems</td>
</tr>
<tr>
<td>11</td>
<td>12-May</td>
<td>Stability of Digital Systems</td>
</tr>
<tr>
<td>11</td>
<td>14-May</td>
<td>TF & State Space Control</td>
</tr>
<tr>
<td>11</td>
<td>16-May</td>
<td>Applications in Industry</td>
</tr>
<tr>
<td>12</td>
<td>19-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>12</td>
<td>21-May</td>
<td>Controllability & Observability</td>
</tr>
<tr>
<td>13</td>
<td>25-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>13</td>
<td>27-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>13</td>
<td>31-May</td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>

• AKA: The last lecture!