Introduction to Digital Control & Stability of Digital Systems

ELEC 3004: Systems: Signals & Controls
Dr. Surya Singh
(Some material adapted from Paul Pounds)

Lecture 19

elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/
May 10, 2013

Today...

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td>1</td>
<td>1-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>2</td>
<td>6-Mar</td>
<td>Signals & Signal Models</td>
</tr>
<tr>
<td>2</td>
<td>8-Mar</td>
<td>System Models</td>
</tr>
<tr>
<td>3</td>
<td>13-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>3</td>
<td>15-Mar</td>
<td>Sampling & Data Acquisition</td>
</tr>
<tr>
<td>4</td>
<td>20-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td>5</td>
<td>22-Mar</td>
<td>System Behaviour & Stability</td>
</tr>
<tr>
<td>5</td>
<td>27-Mar</td>
<td>Signal Representation</td>
</tr>
<tr>
<td>6</td>
<td>30-Mar</td>
<td>Holiday</td>
</tr>
<tr>
<td>6</td>
<td>10-Apr</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>7</td>
<td>12-Apr</td>
<td>Transform</td>
</tr>
<tr>
<td>7</td>
<td>17-Apr</td>
<td>Noise & Filtering</td>
</tr>
<tr>
<td>7</td>
<td>19-Apr</td>
<td>Analog Filters</td>
</tr>
<tr>
<td>8</td>
<td>24-Apr</td>
<td>Discrete-Time Signals</td>
</tr>
<tr>
<td>8</td>
<td>26-Apr</td>
<td>Discrete-Time Systems</td>
</tr>
<tr>
<td>9</td>
<td>1-May</td>
<td>Digital Filters & IIR/FIR Systems</td>
</tr>
<tr>
<td>9</td>
<td>3-May</td>
<td>Fourier Transform & DTFT</td>
</tr>
<tr>
<td>10</td>
<td>8-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td>10</td>
<td>10-May</td>
<td>Stability of Digital Systems</td>
</tr>
<tr>
<td>11</td>
<td>15-May</td>
<td>PID & Computer Control</td>
</tr>
<tr>
<td>12</td>
<td>17-May</td>
<td>Applications in Industry</td>
</tr>
<tr>
<td>12</td>
<td>22-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>12</td>
<td>24-May</td>
<td>Controllability & Observability</td>
</tr>
<tr>
<td>13</td>
<td>28-May</td>
<td>Information Theory/Communications & Review</td>
</tr>
<tr>
<td>13</td>
<td>31-May</td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>
Goals for the Week

- Wrap up Digital Filters (and bookend it with a Pop-Quiz)
- Introduce Digital Systems and Feedback Control
- z-Transform for Digital Control
- Design Using Digital Equivalents ➔ Friday
- Stability of Digital Systems

Announcements:

- Final Exam:
 - 15 Questions (60% Short Answer, 40% Regular Problems)
 - 3 Hours
 - Closed-book
 - Took tutor ~90min to complete
 - Equation sheet will be provided (in addition to your own)
 [See Prac Final – Coming out next week]
 - Yes, it has an unexpected twist at the end, but you’ll like it. 😊

 ➔Saturday, June 15 at 9:30 AM (sorry!)
Digital control

Once upon a time…

- Electromechanical systems were controlled by electromechanical compensators
 - Mechanical flywheel governors, capacitors, inductors, resistors, relays, valves, solenoids (fun!)
 - But also complex and sensitive!

> Idea: Digital computers in real-time control
 - Transform approach (classical control)
 - Root-locus methods (pretty much the same as METR 3200)
 - Bode’s frequency response methods (these change compared to METR 3200)
 - State-space approach (modern control)

> Model Making: Control of frequency response as well as Least Squares Parameter Estimation
Simple Controller Goes Digital

\[d_i = \text{desiredFront} \quad d_o = \text{distanceFront} \]

\[\begin{align*}
\text{plant:} & \quad y[n] = y[n-1] - T u[n-1] \\
\text{sensor:} & \quad y'[n] = u'[n-1] \\
\text{controller:} & \quad y[n] = K u[n] \\
\end{align*} \]

Complex system behaviors, depending on \(K \)

Return to the discrete domain

- Recall that continuous signals can be represented by a series of samples with period \(T \)
Zero Order Hold

- An output value of a synthesised signal is held constant until the next value is ready
 - This introduces an effective delay of $T/2$

Digitisation

- Continuous signals sampled with period T
- kth control value computed at $t_k = kT$
Digitisation

- Continuous signals sampled with period T
- kth control value computed at $t_k = kT$

![Diagram showing the process of digitisation]

Difference equations

- How to represent differential equations in a computer? Difference equations!
- The output of a difference equation system is a function of current and previous values of the input and output:

$$y(t_k) = D(x(t_k), x(t_{k-1}), \ldots, x(t_{k-n}), y(t_{k-1}), \ldots, y(t_{k-n}))$$

 - We can think of x and y as parameterised in k
 - Useful shorthand: $x(t_{k+i}) \equiv x(k + i)$
Euler’s method*

- Dynamic systems can be approximated† by recognising that:

\[
\dot{x} \approx \frac{x(k + 1) - x(k)}{T}
\]

- As \(T \to 0 \), approximation error approaches 0

*Also known as the forward rectangle rule
†Just an approximation — more on this later

An example!

Convert the system \(\frac{Y(s)}{X(s)} = \frac{s+2}{s+1} \) into a difference equation with period \(T \), using Euler’s method.

1. Rewrite the function as a dynamic system:

\[
sY(s) + Y(s) = sX(s) + 2X(s)
\]

Apply inverse Laplace transform:

\[
y(t) + y(t) = \dot{x}(t) + 2x(t)
\]

2. Replace continuous signals with their sampled domain equivalents, and differentials with the approximating function

\[
\frac{y(k + 1) - y(k)}{T} + y(k) = \frac{x(k + 1) - x(k)}{T} + 2x(k)
\]
An example!

Simplify:

\[
\begin{align*}
y(k + 1) - y(k) + Ty(k) &= x(k + 1) - x(k) + 2Tx(k) \\
y(k + 1) + (T - 1)y(k) &= x(k + 1) + (2T - 1)x(k) \\
y(k + 1) &= x(k + 1) + (2T - 1)x(k) - (T - 1)y(k)
\end{align*}
\]

We can implement this in a computer.

Cool, let’s try it!

Back to the future

A quick note on causality:

- Calculating the “\((k+1)th\)” value of a signal using

\[
y(k + 1) = x(k + 1) + Ax(k) - By(k)
\]

relies on also knowing the next (future) value of \(x(t)\).

- Real systems always run with a delay:

\[
y(k) = x(k) + Ax(k - 1) - By(k - 1)
\]
Back to the example!

T = 0.02; //period of 50 Hz, a number pulled from thin air
A = 2*T-1; //pre-calculated control constants
B = T-1;
...

while(1)
{
 if(interrupt_flag) //this triggers every 20 ms
 {
 x0 = x; //save previous values
 y0 = y;
 x = update_input(); //get latest x value
 y = x + A*x0 - B*y0; //do the difference equations
 update_output(y); //write out current value
 }
}

(The actual maths bit)

Coping with complexity

- Transfer functions help control complexity
 - Recall the Laplace transform:
 \[\mathcal{L}\{f(t)\} = \int_0^{\infty} f(t)e^{-st}dt = F(s) \]
 where
 \[\mathcal{L}\{\dot{f}(t)\} = sF(s) \]

\[
\begin{array}{ccc}
x(t) & \xrightarrow{H(s)} & y(t)
\end{array}
\]

Is there a something similar for sampled systems?
The \(z \)-transform

- The discrete equivalent is the \(z \)-Transform†:

\[
Z \{ f(\k) \} = \sum_{k=0}^{\infty} f(k)z^{-k} = F(z)
\]

and

\[
Z \{ f(k-1) \} = z^{-1}F(z)
\]

Convenient!

†This is not an approximation, but approximations are easier to derive

Some useful properties
- **Delay by \(n \) samples:** \(Z \{ f(k-n) \} = z^{-n}F(z) \)
- **Linear:** \(Z \{ af(k) + bg(k) \} = aF(z) + bG(z) \)
- **Convolution:** \(Z \{ f(k) * g(k) \} = F(z)G(z) \)

So, all those block diagram manipulation tools you know and love will work just the same!
The z-transform

- In practice, you’ll use look-up tables or computer tools (ie. Matlab) to find the z-transform of your functions

<table>
<thead>
<tr>
<th>$F(s)$</th>
<th>$F(kt)$</th>
<th>$F(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{s}$</td>
<td>1</td>
<td>$\frac{z}{z-1}$</td>
</tr>
<tr>
<td>$\frac{1}{s^2}$</td>
<td>kT</td>
<td>$\frac{Tz}{(z-1)^2}$</td>
</tr>
<tr>
<td>$\frac{1}{s+a}$</td>
<td>e^{-akT}</td>
<td>$\frac{z}{z-e^{-at}}$</td>
</tr>
<tr>
<td>$\frac{1}{(s+a)^2}$</td>
<td>kTe^{-akT}</td>
<td>$\frac{Tz e^{-at}}{(z-e^{-at})^2}$</td>
</tr>
<tr>
<td>$\frac{1}{s^2 + a^2}$</td>
<td>$\sin(akT)$</td>
<td>$\frac{z \sin at}{z^2 - (2 \cos at)z + 1}$</td>
</tr>
</tbody>
</table>

Why z-Transform

- Makes it easy to analyse feedback systems governed by difference equations
- For any complex number $z = re^{j\omega}$, $y[n] \xrightarrow{z} Y(z)$

Forward Analysis: $Y(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$

Backward Synthesis
(for any fixed $r > 0$ on which the Z-transform converges):

$$y[n] = \frac{1}{2\pi j} \int_{2\pi} Y(re^{j\omega})(re^{j\omega})^n \, d\omega$$
z-Transforms for Difference Equations

- First-order linear constant coefficient difference equation:

\[
y[n] = ay[n-1] + bu[n]
\]

\[
h[n] = \begin{cases}
 ba^n & n \geq 0, \\
 0 & \text{otherwise.}
\end{cases}
\]

\[
H(z) = \sum_{k=0}^{\infty} ba^k z^{-k} = b \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^k = \frac{b}{1 - az^{-1}}, \quad \text{when } |z| > |a|.
\]

z-Transforms for Difference Equations

- First-order linear constant coefficient difference equation:

\[
y[n] = ay[n-1] + bu[n]
\]

\[
y[n] - ay[n-1] = bu[n]
\]

\[
\downarrow
\]

\[
Y(z) - az^{-1}Y(z) = bU(z)
\]

\[
H(z) = \frac{Y(z)}{U(z)} = \frac{b}{1 - az^{-1}}, \quad \text{when does it converge?}
\]
Region of Convergence (ROC) Plots

\[H(z) = \frac{Y(z)}{U(z)} = \frac{b}{1 - az^{-1}}, \quad |z| > |a| \]

Right-sided signals have “outsided” ROCs.

Left-sided signals have “insided” ROCs.

Properties of the ROC

- The ROC is always defined by circles centered around the origin.

 \(h[n] r^{-n} \) is absolutely summable, where \(r = |z| \).

- Right-sided signals have “outsided” ROCs.

 If \(\exists n_0 \) such that \(h[n] = 0 \) \(\forall n < n_0 \), then if \(r_0 \in \text{ROC} \), then \(\forall r \) with \(r_0 < r < \infty \) are also in the ROC.

- Left-sided signals have “insided” ROCs.

 (with \(\forall r \) within \(0 < r < r_0 \))
Combinations of Signals

\[y_1[n] = \begin{cases} ba^n & n \geq 0 \\ 0 & n < 0 \end{cases}, \quad y_2[n] = \begin{cases} 0 & n \geq 0 \\ -ba^n & n < 0 \end{cases} \]

\[
\alpha \text{ ROC for } \alpha_1 y_1[n] + \alpha_2 y_2[n]
\]

Higher-order difference equations

\[y[n] = a_1 y[n-1] + a_2 y[n-2] + a_3 y[n-3] + b_0 u[n] + b_1 u[n-1] + \ldots \]

Easy to take the Z-transform

\[Y(z) = a_1 z^{-1} Y(z) + a_2 z^{-2} Y(z) + a_3 z^{-3} Y(z) + b_0 U(z) + \ldots \]

\[H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \ldots}{1 - a_1 z^{-1} - a_2 z^{-2} - a_3 z^{-3} + \ldots} \]
Final value theorem

- An important question: what is the steady-state output a stable system at \(t = \infty \)?
 - For continuous systems, this is found by:
 \[
 \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)
 \]
 - The discrete equivalent is:
 \[
 \lim_{k \to \infty} x(k) = \lim_{z \to 1} (1 - z^{-1})X(z)
 \]
 (Provided the system is stable)

An example!

- Back to our difference equation:
 \[
 y(k) = x(k) + Ax(k - 1) - By(k - 1)
 \]
 becomes
 \[
 Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z)
 \]
 \[
 (z + B)Y(z) = (z + A)X(z)
 \]
 which yields the transfer function:
 \[
 \frac{Y(z)}{X(z)} = \frac{z + A}{z + B}
 \]

Note: It is also not uncommon to see systems expressed as polynomials in \(z^{-n} \).
This looks familiar…

• Compare:

\[
\frac{Y(s)}{X(s)} = \frac{s+2}{s+1} \quad \text{vs} \quad \frac{Y(z)}{X(z)} = \frac{z+A}{z+B}
\]

How are the Laplace and \(z \) domain representations related?

Consider the simplest system

• Take a first-order response:

\[
f(t) = e^{-at} \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s + a}
\]

• The discrete version is:

\[
f(kT) = e^{-akT} \Rightarrow \mathcal{Z}\{f(k)\} = \frac{z}{z - e^{-aT}}
\]

The equivalent system poles are related by

\[
z = e^{sT}
\]

That sounds somewhat profound… but what does it mean?
The z-Plane

- z-domain poles and zeros can be plotted just like s-domain poles and zeros:

![Diagram of z-Plane](image)

Deep insight #1

The mapping between continuous and discrete poles and zeros acts like a distortion of the plane

![Diagram of distortion](image)
The z-plane

- We can understand system response by pole location in the z-plane

[Adapted from Franklin, Powell and Emami-Naeini]

Effect of pole positions

- We can understand system response by pole location in the z-plane
Effect of pole positions

- We can understand system response by pole location in the z-plane

![Graph showing the effect of pole positions](image)

Effect of pole positions

- We can understand system response by pole location in the z-plane

![Graph showing the effect of pole positions](image)
Damping and natural frequency

\[z = e^{\xi T} \text{ where } s = -\xi \omega_n \pm j \omega_n \sqrt{1 - \xi^2} \]

Quick refresher: the root locus

- The transfer function for a closed-loop system can be easily calculated:

\[
\begin{align*}
 y &= CH(r - y) \\
 y + CHy &= CHr \\
 \therefore \frac{y}{r} &= \frac{CH}{1 + CH}
\end{align*}
\]
Quick refresher: the root locus

- We often care about the effect of increasing gain of a control compensator design:

\[\frac{y}{r} = \frac{kCH}{1 + kCH} \]

Multiplying by denominator:

\[\frac{y}{r} = \frac{kC_nH_n}{C_dH_d + kCnHn} \]

Example:

- Is this system stable?

\[u(k) = 0.9u(k - 1) - 0.2u(k - 2) \]

- Time-shift it:

\[u(k + 2) = 0.9u(k + 1) - 0.2u(k) \]

- z-Transform:

\[(1)z^2 - 0.9z + 0.2 = 0 \]

- Characteristic Roots:

\(z = 0.5, z = 0.4 \) \(\Rightarrow \) STABLE!
Quick refresher: the root locus

- Pole positions change with increasing gain
 - The trajectory of poles on the pole-zero plot with changing k is called the “root locus”
 - This is sometimes quite complex

(In practice you’d plot these with computers)

z-plane stability

- In the z-domain, the unit circle is the system stability bound
z-plane stability

- In the z-domain, the unit circle is the system stability bound.

\[
\begin{align*}
\text{Img}(z) & \quad \text{Re}(z) \\
\text{Img}(s) & \quad \text{Re}(s)
\end{align*}
\]

z-plane stability

- The z-plane root-locus in closed loop feedback behaves just like the s-plane:

\[
\begin{align*}
\text{Img}(z) & \quad \text{Re}(z) \\
\text{Img}(s) & \quad \text{Re}(s)
\end{align*}
\]
Deep insight #2

Gains that stabilise continuous systems can actually *destabilise* digital systems!

Quick plug*

- Most of this is based on Chapter 8 of "Feedback Control of Dynamic Systems" by Franklin, Powell and Emami-Naeini.

* No, they’re not paying me – it’s just a really good book!