Introduction to Digital Control

ELEC 3004: Systems: Signals & Controls
Dr. Surya Singh
(Some material adapted from Paul Pounds and Russ Tedrake)

Lecture 18

elec3004@itee.uq.edu.au
http://robotics.itee.uq.edu.au/~elec3004/

© 2013 School of Information Technology and Electrical Engineering at The University of Queensland

May 8, 2013

Today…

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td>11</td>
<td>15-May</td>
<td>PID & Computer Control</td>
</tr>
<tr>
<td>12</td>
<td>22-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>13</td>
<td>29-May</td>
<td>Information Theory/Communications & Review</td>
</tr>
<tr>
<td>14</td>
<td>31-May</td>
<td>Summary and Course Review</td>
</tr>
<tr>
<td>1</td>
<td>27-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>1-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>3</td>
<td>6-Mar</td>
<td>Signals & Signal Models</td>
</tr>
<tr>
<td>4</td>
<td>8-Mar</td>
<td>System Models</td>
</tr>
<tr>
<td>5</td>
<td>13-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>6</td>
<td>15-Mar</td>
<td>Sampling & Data Acquisition</td>
</tr>
<tr>
<td>7</td>
<td>20-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td>8</td>
<td>22-Mar</td>
<td>System Behaviour & Stability</td>
</tr>
<tr>
<td>9</td>
<td>25-Mar</td>
<td>Signal Representation</td>
</tr>
<tr>
<td>10</td>
<td>29-Mar</td>
<td>Holiday</td>
</tr>
<tr>
<td>11</td>
<td>10-Apr</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>12</td>
<td>12-Apr</td>
<td>Transforms</td>
</tr>
<tr>
<td>13</td>
<td>17-Apr</td>
<td>Noise & Filtering</td>
</tr>
<tr>
<td>14</td>
<td>19-Apr</td>
<td>Analog Filters</td>
</tr>
<tr>
<td>15</td>
<td>24-Apr</td>
<td>Discrete-Time Signals</td>
</tr>
<tr>
<td>16</td>
<td>26-Apr</td>
<td>Discrete-Time Systems</td>
</tr>
<tr>
<td>17</td>
<td>1-May</td>
<td>Digital Filters & IIR/FIR Systems</td>
</tr>
</tbody>
</table>

8 May 2013
Goals for the Week

- Wrap up Digital Filters (and bookend it with a Pop-Quiz)
- Introduce Digital Systems and Feedback Control
- \(z \)-Transform for Digital Control
- Design Using Digital Equivalents ➔ Friday
- Stability of Digital Systems

Announcements:

- There is a “Pop-Quiz” Today
 (There is no COLA, that’s for METR4202 or the Gov’t)

- There is a bug in Q8. It asks for an **Inverse Chebyshev**.
 - Options are to:
 - (1) Use a Chebyshev
 - (2) Use a different analogy circuit topology
Frequently Asked Questions

- Here is a list of the most common questions that people have been asking me about the homework …

- I have given answers where possible, and hints where appropriate

- Big Hint:
 - Please look at the revised material on the website

- Bigger Hint:
 - There is always Lathi’s book.

Q1: What about zeros and poles and the four major low-pass analog filters?

- Review the low-pass transfer function \(H(s) \) for The Butterworth and Chebyshev filters

 - Butterworth: \[|H(j\omega)| = \frac{1}{\sqrt{1 + \omega^{2n}}} \]

 - Cheby: \[|H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 C_n^2(\omega)}} \]

- No s-terms in the numerator and thus the filter can be said to be “all poles”

 - Compare that to FIR filters which can be said to be “all zeros” (not to be confused with my wit which can also be said to be “all zeros”)
Q2: Why Normalized frequency?
What is it? and Why are the filters out of π?

- Since digital signals are dominated by the sampling rate (F_s),

- It is convention to talk about the response of a filter with respect to it.

- F_s is called the "sample unit" or "sample" for short.

Q2 Continued…

- Thus, a Normalized frequency
 = cycles / sample unit
 = [Hz] ÷ [Sample Rate]

 Also recall that $\Omega = \omega T$.
 If $F_s = 1$. Then $\Omega s = 2\pi * F_s = 2\pi$ (Radians/sample unit)

 Thus, at $F_s/2$ (the Nyquist frequency) is $\Omega = \pi$

 As aliasing occurs from $\pi \leq \Omega$, we generally limit ourselves to $[0, F_s/2]$ or $[0, \pi]$.

 This is why the filter is out of π (and not 0.5).
Q3. How do we go from the window function to the coefficients?

- \(h(n) = h_d(n) \ast w(n), 0 \leq n \leq M \)
 - where:
 - \(h(n) \) is the FIR sequence
 - \(h_d(n) \) is the DESIRED IDEAL filter response.
 - For a Low-Pass filter (a rectangle), this is a sinc function
 - \(M \) is the order
 - (FYI \(\Rightarrow \) The number of samples [time indices] = \(M+1 \))

 IF we take the Fourier transform of \(h(n) \) we get:

 \[
 H(\omega) = H_d(\omega) \ast W(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\omega') W(\omega - \omega') d\omega'
 \]

Q4. What is a negative frequency?

- It is a mathematical convenience for looking at frequencies from the Nyquist Frequency \((F_s/2) \) to the Sample Frequency \((F_s) \).

- Remember the "folding frequency" effect -- that is for that a component of frequency \((F_s/2) + f_z \) shows up as or "impersonates" as a component of lower frequency \((F_s/2) - f_z \) in the reconstructed signal.

 - For example. Consider a \(F_s=1000 \) Hz, Then \(F_s/2 = 500 \) Hz. A \(f=600 \) Hz will be under-sampled, but it does not "just go away!" Instead it "looks like" a 400 Hz signal (why? \? \(600=500+100 \), where \(f_z=100, F_s/2=500 \rightarrow \) so \(\text{Alias} = 500-100 = 400\text{Hz} \)).

 - HOWEVER, if we just shift everything past 500 Hz "by 1000 Hz" on the graph, then what was at 500Hz+, moves to -500Hz. So "600 Hz - 1000Hz = -400 Hz" Or a "400 Hz signal with inverted phase" which is what we see due to the aliasing.
Q5: How do you get the “π” and stuff

- Unicode!

- Uniwhat?
 - Windows: Character Map
 - Mac: Character Palette
 - Linux: gnome-character-map, unum, kCharSelect, …

- Websites:
 - Many!
 - Unicode Table: http://jrgraphix.net/r/Unicode/0370-03FF

Q6: There is control stuff in the Problem Set

- Yes!

- We’re getting to it!

- Patience is a virtue. … Please be virtuous! 😊
Digital control

Once upon a time…

• Electromechanical systems were controlled by electromechanical compensators
 – Mechanical flywheel governors, capacitors, inductors, resistors, relays, valves, solenoids (fun!)
 – But also complex and sensitive!

• Humans developed sophisticated tools for designing reliable analog controllers

Computer revolution

• In the 1950s and 60s very smart people developed computerised controllers
• Digital processor implements the control algorithm numerically, rather than in discrete hardware
Many advantages

- Practical improvement over analog control:
 - **Flexible**: reprogrammable to implement different control laws for different systems
 - **Adaptable**: control algorithms can be changed on-line, during operation
 - **Insensitive** to environmental conditions; (heat, EMI, vibration, etc)
 - **Compact**: handful of components on a PCB
 - **Cheap**

Ok, so how do we do this?

We already know about control, right?
What you already know*

• Signals can be represented by transfer functions in the s-domain

• Roots of a transfer function’s denominator (poles) indicate the stability of the system

• Poles move around under feedback control
 – Feedback can stabilise an unstable system

*If you have no idea what I’m talking about, now is the time to mention it.

The good news

Digital control is just like that!

Thanks for coming, see you at the exam!
Not so fast

• While there are discrete analogues for every part of continuous systems theory, there are unique and important differences you must be familiar with

Virtually every control system you will ever use will be a computerised digital controller

Feedback Control

(Simple) control systems have three parts:

• The plant is the system to be controlled (e.g. the robot).
• The sensor measures the output of the plant.
• The controller sends an input command to the plant based on the difference from the actual output and the desired output.
Archetypical control system

- Consider a continuous control system:

\[r(t) \rightarrow e(t) \rightarrow C(s) \rightarrow u(t) \rightarrow H(s) \rightarrow y(t) \]

- The functions of the controller can be entirely represented by a discretised computer system

Simple Controller Goes Digital

\[y[n] = y[n-1] - Tu[n-1] \]

\[y[n] = u[n-1] \]

\[y[n] = Ku[n] \]

Complex system behaviors, depending on \(K \)
Return to the discrete domain

- Recall that continuous signals can be represented by a series of samples with period \(T \)

![Diagram showing discretization of a continuous signal](image)

Zero Order Hold

- An output value of a synthesized signal is held constant until the next value is ready
 - This introduces an effective delay of \(T/2 \)

![Diagram showing zero order hold](image)
Digitisation

- Continuous signals sampled with period T
- kth control value computed at $t_k = kT$

$$\sum y(t) r(t) u(t) e(kT) - r(kT) + y(kT)$$

ADC

controller
Difference equations

- How to represent differential equations in a computer? Difference equations!
- The output of a difference equation system is a function of current and previous values of the input and output:
 \[y(t_k) = D(x(t_k), x(t_{k-1}), \ldots, x(t_{k-n}), y(t_{k-1}), \ldots, y(t_{k-n})) \]
 - We can think of \(x \) and \(y \) as parameterised in \(k \)
 - Useful shorthand: \(x(t_{k+i}) \equiv x(k+i) \)

Euler’s method*

- Dynamic systems can be approximated† by recognising that:
 \[\dot{x} \approx \frac{x(k+1) - x(k)}{T} \]
 - As \(T \to 0 \), approximation error approaches 0

*Also known as the forward rectangle rule
†Just an approximation – more on this later
An example!

Convert the system \(\frac{Y(s)}{X(s)} = \frac{s+2}{s+1} \) into a difference equation with period \(T \), using Euler’s method.

1. Rewrite the function as a dynamic system:
 \[sY(s) + Y(s) = sX(s) + 2X(s) \]
 Apply inverse Laplace transform:
 \[y(t) + y(t) = \dot{x}(t) + 2x(t) \]

2. Replace continuous signals with their sampled domain equivalents, and differentials with the approximating function
 \[\frac{y(k+1) - y(k)}{T} + y(k) = \frac{x(k+1) - x(k)}{T} + 2x(k) \]

We can implement this in a computer.

Cool, let’s try it!

An example!

Simplify:

\[
\begin{align*}
y(k + 1) - y(k) + Ty(k) &= x(k + 1) - x(k) + 2Tx(k) \\
y(k + 1) + (T - 1)y(k) &= x(k + 1) + (2T - 1)x(k)
\end{align*}
\]

\[
y(k + 1) = x(k + 1) + (2T - 1)x(k) - (T - 1)y(k)
\]

We can implement this in a computer.

Cool, let’s try it!
Back to the future

A quick note on causality:
• Calculating the “(k+1)th” value of a signal using
 \[y(k + 1) = x(k + 1) + Ax(k) - By(k) \]

 relies on also knowing the next (future) value of \(x(t) \).
 (this requires very advanced technology!)

• Real systems always run with a delay:
 \[y(k) = x(k) + Ax(k - 1) - By(k - 1) \]

Back to the example!

\[
T = 0.02; \quad // \text{period of 50 Hz, a number pulled from thin air} \\
A = 2*T-1; \quad // \text{pre-calculated control constants} \\
B = T-1; \\
... \\
while(1) \\
{ \\
 if(interrupt_flag) \quad // \text{this triggers every 20 ms} \\
 { \\
 x0 = x; \quad // \text{save previous values} \\
 y0 = y; \\
 x = update_input(); \quad // \text{get latest x value} \\
 y = x + A*x0 - B*y0; \quad // \text{do the difference equations} \\
 update_output(y); \quad // \text{write out current value} \\
 } \\
} \\
\]
Great!

We already know how to design compensators, and now we can implement them in a computer.

That means we’re done, right?

Not quite

There are unanswered questions:
- How do we analyse more elaborate systems of these difference equation things?
- What happens as you change T?
 - How would you even choose the right T?
- What about Nyquist? Or noise?
- How good are those approximations anyway?
Coping with complexity

- Transfer functions help control complexity
 - Recall the Laplace transform:
 \[\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = F(s) \]
 where
 \[\mathcal{L}\{\dot{f}(t)\} = sF(s) \]

 Is there a something similar for sampled systems?

The z-transform

- The discrete equivalent is the z-Transform\(^\dagger\):
 \[\mathcal{Z}\{f(k)\} = \sum_{k=0}^{\infty} f(k)z^{-k} = F(z) \]
 and
 \[\mathcal{Z}\{f(k-1)\} = z^{-1}F(z) \]

\(^\dagger\)This is not an approximation, but approximations are easier to derive
The z-transform

- Some useful properties
 - Delay by n samples: $Z\{f(k - n)\} = z^{-n}F(z)$
 - Linear: $Z\{af(k) + bg(k)\} = aF(z) + bG(z)$
 - Convolution: $Z\{f(k) * g(k)\} = F(z)G(z)$

So, all those block diagram manipulation tools you know and love will work just the same!

The z-transform

- In practice, you’ll use look-up tables or computer tools (ie. Matlab) to find the z-transform of your functions

<table>
<thead>
<tr>
<th>$F(s)$</th>
<th>$F(kT)$</th>
<th>$F(z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{s}$</td>
<td>1</td>
<td>$\frac{z}{z - 1}$</td>
</tr>
<tr>
<td>$\frac{1}{s^2}$</td>
<td>kT</td>
<td>$\frac{Tz}{(z - 1)^2}$</td>
</tr>
<tr>
<td>$\frac{1}{s + a}$</td>
<td>e^{-aT}</td>
<td>$\frac{z}{z - e^{-aT}}$</td>
</tr>
<tr>
<td>$\frac{1}{(s + a)^2}$</td>
<td>kTe^{-aT}</td>
<td>$\frac{Tze^{-aT}}{(z - e^{-aT})^2}$</td>
</tr>
<tr>
<td>$\frac{1}{s^2 + a^2}$</td>
<td>$\sin(at)$</td>
<td>$\frac{z \sin at}{z^2 - (2 \cos at)x + 1}$</td>
</tr>
</tbody>
</table>
Why z-Transform

- Makes it easy to analyse feedback systems governed by difference equations
- For any complex number \(z = re^{j\omega} \)
 \[y[n] \xrightarrow{z} Y(z) \]

- Forward Analysis:
 \[Y(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k} \]

- Backward Synthesis
 (for any fixed \(r > 0 \) on which the Z-transform converges):
 \[y[n] = \frac{1}{2\pi} \int_{\beta r}^{\beta r} Y(re^{j\omega})(re^{j\omega})^n d\omega \]

z-Transforms for Difference Equations

- First-order linear constant coefficient difference equation:

\[
y[n] = ay[n-1] + bu[n]
\]

\[
h[n] = \begin{cases} \frac{b}{a}n & n \geq 0, \\ 0 & \text{otherwise.} \end{cases}
\]

\[H(z) = \sum_{k=0}^{\infty} b a^k z^{-k} = b \sum_{k=0}^{\infty} \left(\frac{a}{z} \right)^k = \frac{b}{1 - az^{-1}}, \quad \text{when } |z| > |a|. \]
z-Transforms for Difference Equations

First-order linear constant coefficient difference equation:

\[y[n] = ay[n-1] + bu[n] \]

\[Y(z) - az^{-1}Y(z) = bU(z) \]

\[H(z) = \frac{Y(z)}{U(z)} = \frac{b}{1-az^{-1}}, \text{ when does it converge?} \]

Region of Convergence (ROC) Plots

\[H(z) = \frac{Y(z)}{U(z)} = \frac{b}{1-az^{-1}}, \quad |z| > |a| \]
Properties of the ROC

The ROC is always defined by circles centered around the origin.

\[h[k]r^{-k} \text{ is absolutely summable, where } r = |z|. \]

Right-sided signals have “outsided” ROCs.

If \(\exists n_0 \) such that \(h[n] = 0 \) \(\forall n < n_0 \), then if \(r_0 \in \text{ROC} \), then \(\forall r \) with \(r_0 < r < \infty \) are also in the ROC.

Left-sided signals have “insided” ROCs.
(with \(\forall r \) within \(0 < r < r_0 \))

Combinations of Signals

\[y_1[n] = \begin{cases} ba^n & n \geq 0 \\ 0 & n < 0 \end{cases} \quad y_2[n] = \begin{cases} 0 & n \geq 0 \\ -ba^n & n < 0 \end{cases} \]

\(a = .5 \) \quad \(a = 2 \)

ROC for \(\alpha y_1[n] + \alpha y_2[n] \)
Higher-order difference equations

\[y[n] = a_1 y[n-1] + a_2 y[n-2] + a_3 y[n-3] + b_0 u[n] + b_1 u[n-1] + \ldots \]

Easy to take the Z-transform

\[Y(z) = a_1 z^{-1} Y(z) + a_2 z^{-2} Y(z) + a_3 z^{-3} Y(z) + b_0 U(z) + \ldots \]

\[H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-1} + \ldots}{1 - a_1 z^{-1} - a_2 z^{-2} - a_3 z^{-3} + \ldots} \]

Final value theorem

- An important question: what is the steady-state output a stable system at \(t = \infty \)?
 - For continuous systems, this is found by:
 \[\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) \]
 - The discrete equivalent is:
 \[\lim_{k \to \infty} x(k) = \lim_{z \to 1} (1 - z^{-1})X(z) \]

 (Provided the system is stable)
An example!

- Back to our difference equation:
 \[y(k) = x(k) + Ax(k - 1) - By(k - 1) \]

becomes

\[Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z) \]
\[(z + B)Y(z) = (z + A)X(z) \]

which yields the transfer function:

\[\frac{Y(z)}{X(z)} = \frac{z + A}{z + B} \]

Note: It is also not uncommon to see systems expressed as polynomials in \(z^{-n} \).

This looks familiar…

- Compare:

\[\frac{Y(s)}{X(s)} = \frac{s+2}{s+1} \quad \text{vs} \quad \frac{Y(z)}{X(z)} = \frac{z+A}{z+B} \]

How are the Laplace and \(z \) domain representations related?
Consider the simplest system

- Take a first-order response:
 \[f(t) = e^{-at} \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s + a} \]
- The discrete version is:
 \[f(kT) = e^{-akT} \Rightarrow \mathcal{Z}\{f(k)\} = \frac{z}{z - e^{-aT}} \]

The equivalent system poles are related by
\[z = e^{sT} \]

That sounds somewhat profound… but what does it mean?

The \(z \)-Plane

- \(z \)-domain poles and zeros can be plotted just like \(s \)-domain poles and zeros:

![Diagram showing \(s \)-plane and \(z \)-plane with poles and zeros plotted](image-url)
Deep insight #1

The mapping between continuous and discrete poles and zeros acts like a distortion of the plane

[max frequency]

The \(z \)-plane

- We can understand system response by pole location in the \(z \)-plane

[Adapted from Franklin, Powell and Emami-Naeini]
Effect of pole positions

- We can understand system response by pole location in the z-plane.

Increasing frequency

Most like the s-plane
Effect of pole positions

- We can understand system response by pole location in the z-plane

\[z = e^{st} \text{ where } s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2} \]

Damping and natural frequency

[Adapted from Franklin, Powell and Emami-Naeini]
Quick refresher: the root locus

- The transfer function for a closed-loop system can be easily calculated:

\[y = CH(r - y) \]
\[y + CHy = CHr \]
\[\therefore r = \frac{CH}{1 + CH} \]

\[y = kCH \]
\[\frac{y}{r} = \frac{kCH}{1 + kCH} \]

Multiplying by denominator:
\[\frac{y}{r} = \frac{kCH}{\text{characteristic polynomial}} \]

\[C_dH_d + kCnHn \]
Quick refresher: the root locus

- Pole positions change with increasing gain
 - The trajectory of poles on the pole-zero plot with changing k is called the “root locus”
 - This is sometimes quite complex

(In practice you’d plot these with computers)

z-plane stability

- In the z-domain, the unit circle is the system stability bound
z-plane stability

- In the z-domain, the unit circle is the system stability bound

\[
\begin{align*}
\text{Re}(z) & \quad \text{Re}(s) \\
\text{Im}(z) & \quad \text{Im}(s)
\end{align*}
\]

z-plane stability

- The z-plane root-locus in closed loop feedback behaves just like the s-plane:
Deep insight #2

Gains that stabilise continuous systems can actually *destabilise* digital systems!

Quick plug*

- Most of this is based on Chapter 8 of *Feedback Control of Dynamic Systems* by Franklin, Powell and Emami-Naeini.

* No, they’re not paying me – it’s just a really good book!
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>1-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>2</td>
<td>6-Mar</td>
<td>Signals & Signal Models</td>
</tr>
<tr>
<td></td>
<td>8-Mar</td>
<td>System Models</td>
</tr>
<tr>
<td>3</td>
<td>13-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td></td>
<td>15-Mar</td>
<td>Sampler & Data Acquisition</td>
</tr>
<tr>
<td>4</td>
<td>20-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td></td>
<td>22-Mar</td>
<td>System Behaviour & Stability</td>
</tr>
<tr>
<td>5</td>
<td>27-Mar</td>
<td>Signal Representation</td>
</tr>
<tr>
<td></td>
<td>29-Mar</td>
<td>Holiday</td>
</tr>
<tr>
<td>6</td>
<td>10-Apr</td>
<td>Frequency Response</td>
</tr>
<tr>
<td></td>
<td>12-Apr</td>
<td>Transform</td>
</tr>
<tr>
<td>7</td>
<td>17-Apr</td>
<td>Noise & Filtering</td>
</tr>
<tr>
<td></td>
<td>19-Apr</td>
<td>Analog Filters</td>
</tr>
<tr>
<td>8</td>
<td>24-Apr</td>
<td>Discrete-Time Signals</td>
</tr>
<tr>
<td></td>
<td>26-Apr</td>
<td>Discrete-Time Systems</td>
</tr>
<tr>
<td>9</td>
<td>1-May</td>
<td>Digital Filters & IIR/FIR Systems</td>
</tr>
<tr>
<td>10</td>
<td>8-May</td>
<td>Fourier Transform & DTFT</td>
</tr>
<tr>
<td>11</td>
<td>15-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td></td>
<td>17-May</td>
<td>PID & Computer Control</td>
</tr>
<tr>
<td>12</td>
<td>22-May</td>
<td>Applications in Industry</td>
</tr>
<tr>
<td></td>
<td>24-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>13</td>
<td>29-May</td>
<td>Controllability & Observability</td>
</tr>
<tr>
<td></td>
<td>31-May</td>
<td>Information Theory/Communications & Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>