Today:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td>1</td>
<td>1-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>2</td>
<td>6-Mar</td>
<td>Signals & Signal Models</td>
</tr>
<tr>
<td>2</td>
<td>8-Mar</td>
<td>System Models</td>
</tr>
<tr>
<td>3</td>
<td>13-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>3</td>
<td>15-Mar</td>
<td>Sampling & Data Acquisition</td>
</tr>
<tr>
<td>4</td>
<td>20-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td>5</td>
<td>22-Mar</td>
<td>System Behaviour & Stability</td>
</tr>
<tr>
<td>5</td>
<td>27-Mar</td>
<td>Signal Representation</td>
</tr>
<tr>
<td>6</td>
<td>29-Mar</td>
<td>Holiday</td>
</tr>
<tr>
<td>6</td>
<td>10-Apr</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>12</td>
<td>Apr</td>
<td>z-Transform</td>
</tr>
</tbody>
</table>

- New! Revised order
Announcements:

- Assignment 1 Solutions:
 - Questions 1-5:
 - “all or nothing”
 - Okay… **0 or 3 or 5 points**
 (+ 1-2 bonus for something truly exceptional)
 - Lab 2 (Experiment 3)
 - Is to give you a “feeling” / “intuition” for digital systems
 - Feels a little “ahead” of it’s time
 ➔ We are rerunning it again next week 😊
 (for those who want to do it “post-theory”)
- Lab 3 (Experiment 4)
 - **Will run on Week 9!**
 ∴ Week 8 has the ANZAC holiday

Refresher:
Aliasing & Sampling

- Nyquist:

\[f_h < \frac{f_r}{2} \]

- Spectral Folding:

\[f_{image}(N) = f - N f_s \]
Quick Background:
Pole-Zero Diagrams & The Root Locus

- The transfer function for a closed-loop system can be easily calculated:

\[y = CH(r - y) \]
\[y + CHy = CHr \]
\[y = \frac{CH}{r} \]
\[r = \frac{1}{1 + CH} \]

\[r \]
\[+ \]
\[e \]
\[C \]
controller

\[u \]
\[H \]
plant

\[y \]

Quick Background:
Pole-Zero Diagrams & The Root Locus

- We often care about the effect of increasing gain of a control compensator design:

\[\frac{y}{r} = \frac{kCH}{1 + kCH} \]

Multiplying by denominator:

\[\frac{y}{r} = \frac{kC_nH_n}{C_dH_d + kC_nH_n} \]

characteristic polynomial

\[r \]
\[+ \]
\[e \]
\[k \]

\[C \]

\[u \]
\[H \]

\[y \]
Quick Background:
Pole-Zero Diagrams & The Root Locus

• Pole positions change with increasing gain
 – The trajectory of closed-loop poles on the pole-zero plot with changing k is called the “root locus”
 – This is sometimes quite complex

(Copied with these with computers)

Coping with Complexity

• Transfer functions help control complexity
 – Recall the Laplace transform:
 \[\mathcal{L}\{f(t)\} = \int_0^{\infty} f(t)e^{-st}dt = F(s) \]
 where \[\mathcal{L}\{f(t)\} = sF(s) \]
 \[x(t) \xrightarrow{H(s)} y(t) \]

Is there a something similar for sampled systems?
The z-transform

- The discrete equivalent is the z-Transform†:

$$Z\{f(k)\} = \sum_{k=0}^{\infty} f(k)z^{-k} = F(z)$$

and

$$Z\{f(k-1)\} = z^{-1}F(z)$$

Convenient!

†This is not an approximation, but approximations are easier to derive

What about the Discrete Domain? [Lecture 4-Slide 10]
The \(z \)-transform

- Some useful properties
 - **Delay by \(n \) samples**: \(Z \{ f(k - n) \} = z^{-n}F(z) \)
 - **Linear**: \(Z \{ af(k) + bg(k) \} = aF(z) + bG(z) \)
 - **Convolution**: \(Z \{ f(k) * g(k) \} = F(z)G(z) \)

So, all those block diagram manipulation tools you know and love will work just the same!

<table>
<thead>
<tr>
<th>(F(s))</th>
<th>(F(k))</th>
<th>(F(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{s})</td>
<td>1</td>
<td>(\frac{z}{z - 1})</td>
</tr>
<tr>
<td>(\frac{1}{s^2})</td>
<td>(kT)</td>
<td>(\frac{Tz}{(z - 1)^2})</td>
</tr>
<tr>
<td>(\frac{1}{s + a})</td>
<td>(e^{-akT})</td>
<td>(\frac{z}{z - e^{-aT}})</td>
</tr>
<tr>
<td>(\frac{1}{(s + a)^2})</td>
<td>(kTe^{-akT})</td>
<td>(\frac{zT e^{-aT}}{(z - e^{-aT})^2})</td>
</tr>
<tr>
<td>(\frac{1}{s^2 + a^2})</td>
<td>(\sin(akT))</td>
<td>(\frac{z \sin aT}{z^2 - (2 \cos aT)z + 1})</td>
</tr>
</tbody>
</table>
Final value theorem

- An important question: what is the steady-state output a stable system at $t = \infty$?
 - For continuous systems, this is found by:
 $$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$
 - The discrete equivalent is:
 $$\lim_{k \to \infty} x(k) = \lim_{z \to 1} (1 - z^{-1})X(z)$$
 - (Provided the system is stable)

An example!

- Back to our difference equation:
 $$y(k) = x(k) + Ax(k - 1) - By(k - 1)$$
becomes
 $$Y(z) = X(z) + Az^{-1}X(z) - Bz^{-1}Y(z)$$
 $$(z + B)Y(z) = (z + A)X(z)$$
which yields the transfer function:
 $$\frac{Y(z)}{X(z)} = \frac{z + A}{z + B}$$

Note: It is also not uncommon to see systems expressed as polynomials in z^{-n}
This looks familiar…

- Compare:

\[
\frac{Y(s)}{X(s)} = \frac{s+2}{s+1} \quad \text{vs} \quad \frac{Y(z)}{X(z)} = \frac{z+A}{z+B}
\]

How are the Laplace and z domain representations related?

Consider the simplest system

- Take a first-order response:

\[
f(t) = e^{-at} \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s + a}
\]

- The discrete version is:

\[
f(kT) = e^{-akT} \Rightarrow \mathcal{Z}\{f(k)\} = \frac{z}{z - e^{-aT}}
\]

The equivalent system poles are related by

\[
z = e^{sT}
\]

That sounds somewhat profound… but what does it mean?
The z-Plane

- z-domain poles and zeros can be plotted just like s-domain poles and zeros:

Deep insight #1

The mapping between continuous and discrete poles and zeros acts like a distortion of the plane
The z-plane

- We can understand system response by pole location in the z-plane

[Adapted from Franklin, Powell and Emami-Naeini]

Effect of pole positions

- We can understand system response by pole location in the z-plane

Most like the s-plane
Effect of pole positions

- We can understand system response by pole location in the z-plane.

Increasing frequency

![Diagram showing the effect of pole positions on system response.](attachment:image.png)
Damping and natural frequency

\[z = e^{st} \text{ where } s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2} \]

\[Re(z) \]
\[Img(z) \]
\[\zeta = 0 \]
\[\zeta = 1 \]

\[\omega_n = \frac{\pi}{T} \]

\[z \text{-plane stability} \]
• In the \(z \)-domain, the unit circle is the system stability bound

\[Re(s) \]
\[Img(s) \]
z-plane stability

- In the z-domain, the unit circle is the system stability bound.

![Diagram showing stability in the z-plane]

z-plane stability

- The z-plane root-locus in closed loop feedback behaves just like the s-plane.

![Diagram showing stability in the s-plane]
Recall dynamic responses

- Moving pole positions change system response characteristics

Recall dynamic responses

- Ditto the z-plane:
Deep insight #2

- Gains that stabilise continuous systems can actually **destabilise** digital systems!