Today:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27-Feb</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>1-Mar</td>
<td>Systems Overview</td>
</tr>
<tr>
<td>3</td>
<td>6-Mar</td>
<td>Signals & Signal Models</td>
</tr>
<tr>
<td>4</td>
<td>8-Mar</td>
<td>System Models</td>
</tr>
<tr>
<td>5</td>
<td>13-Mar</td>
<td>Linear Dynamical Systems</td>
</tr>
<tr>
<td>6</td>
<td>15-Mar</td>
<td>Sampling & Data Acquisition</td>
</tr>
<tr>
<td>7</td>
<td>20-Mar</td>
<td>Time Domain Analysis of Continuous Time Systems</td>
</tr>
<tr>
<td>8</td>
<td>22-Mar</td>
<td>System Behaviour & Stability</td>
</tr>
<tr>
<td>9</td>
<td>27-Mar</td>
<td>Signal Representation</td>
</tr>
<tr>
<td>10</td>
<td>29-Mar</td>
<td>Holiday</td>
</tr>
<tr>
<td>11</td>
<td>10-Apr</td>
<td>Frequency Response & Fourier Transform</td>
</tr>
<tr>
<td>12</td>
<td>12-Apr</td>
<td>Analog Filters</td>
</tr>
<tr>
<td>13</td>
<td>17-Apr</td>
<td>IIR Systems</td>
</tr>
<tr>
<td>14</td>
<td>19-Apr</td>
<td>FIR Systems</td>
</tr>
<tr>
<td>15</td>
<td>24-Apr</td>
<td>z-Transform</td>
</tr>
<tr>
<td>16</td>
<td>26-Apr</td>
<td>Discrete-Time Signals</td>
</tr>
<tr>
<td>17</td>
<td>1-May</td>
<td>Discrete-Time Systems</td>
</tr>
<tr>
<td>18</td>
<td>3-May</td>
<td>Digital Filters</td>
</tr>
<tr>
<td>19</td>
<td>8-May</td>
<td>State-Space</td>
</tr>
<tr>
<td>20</td>
<td>10-May</td>
<td>Controllability & Observability</td>
</tr>
<tr>
<td>21</td>
<td>15-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td>22</td>
<td>17-May</td>
<td>Stability of Digital Systems</td>
</tr>
<tr>
<td>23</td>
<td>22-May</td>
<td>PID & Computer Control</td>
</tr>
<tr>
<td>24</td>
<td>24-May</td>
<td>Information Theory & Communications</td>
</tr>
<tr>
<td>25</td>
<td>29-May</td>
<td>Applications in Industry</td>
</tr>
<tr>
<td>26</td>
<td>31-May</td>
<td>Summary and Course Review</td>
</tr>
</tbody>
</table>

ELEC 3004: Systems: Signals & Controls
Dr. Surya Singh
Lecture 10
Cool Signal Share: Eulerian Video Magnification for Revealing Subtle Changes in the World

Eulerian Video Magnification for Revealing Subtle Changes in the World

Hao Yu Wu1 Michael Rubinstein1 Eugene Shih2
John Guttag1 Frédéric Durand1 William T. Freeman1

1MIT CSAIL 2Quanta Research Cambridge, Inc.

Announcements:

- Assignment 1 Solutions:
 - Posted
 - Please try to get the peer review marks in by April 16 at 11:59pm
Signals Processing: Seeing The Light

Think of a Signal Processing like a prism:
“Destructs a source signal into its constituent frequencies”

Fourier Series
• Any finite power, periodic, signal $x(t)$
 – period T
• can be represented as (∞) summation of
 – sine and cosine waves
• Called: Trigonometrical Fourier Series

\[
x(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(nw_0 t) + B_n \sin(nw_0 t)
\]

• Fundamental frequency $w_0 = 2\pi/T$ rad/s or $1/T$ Hz
• DC (average) value $A_0/2$
• Signal measured (or known) as a function of an independent variable
 – e.g., time: \(y = f(t) \)
• However, this independent variable may not be the most appropriate/informative
 – e.g., frequency: \(Y = f(w) \)
• Therefore, need to transform from one domain to the other
 – e.g., time \(\Leftrightarrow \) frequency
 – As used by the human ear (and eye)

Signal processing uses Fourier, Laplace, & z transforms etc

![Time-domain and frequency-domain graphs]

Frequency representation (spectrum) shows signal contains:
- 2Hz and 5Hz components (sinewaves) of equal amplitude
Fourier Series Coefficients

- \(A_n = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos(nw_0 t) \, dt \quad n = 0, 1, 2, \ldots \)

- \(B_n = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin(nw_0 t) \, dt \quad n = 1, 2, 3, \ldots \)

Note: Limits of integration can vary, provided they cover one period.
Fourier Series Coefficients

- Approximation with 1st, 3rd, 5th, & 7th Harmonics added, note:
 - ‘Ringing’ on edges due to series truncation
 - Often referred to as Gibb’s phenomenon
- Fourier series converges to original signal if
 - Dirichlet conditions satisfied
 - Closer approximation with more harmonics
Dirichlet Conditions

- For Fourier series to converge, $f(t)$ must be defined & single valued
- Continuous and have a finite number of finite discontinuities within a periodic interval, and
- Piecewise continuous in periodic interval, as must $f'(t)$

Example: Square wave

\[
x(t) = \begin{cases}
1, & 0 < t < 1; \\
-1, & 1 < t < 2; \\
 x(t + 2). & \text{periodic! i.e., } x(t + 2) = x(t)
\end{cases}
\]

\[
A_n = \int_0^1 x(t) \cos(n \pi t) dt = \frac{1}{n \pi} \cos(n \pi) \left[\int_0^1 \cos(n \pi) dt - \int_1^2 \cos(n \pi) dt \right]
\]

\[
A_n = \left[\frac{-\sin(n \pi)}{n \pi} \right]_0^1 - \left[\frac{-\sin(n \pi)}{n \pi} \right]_1^2 = 0
\]

No cos terms as $\sin(n \pi) = 0 \forall n$

$x(t)$ has odd symmetry

\[
B_n = \frac{1}{n \pi} \int_0^1 x(t) \sin(n \pi t) dt = \frac{1}{n \pi} \sin(n \pi) \left[\int_0^1 \sin(n \pi) dt - \int_1^2 \sin(n \pi) dt \right]
\]

\[
B_n = \left[\frac{-\cos(n \pi)}{n \pi} \right]_0^1 - \left[\frac{-\cos(n \pi)}{n \pi} \right]_1^2 = -\cos(n \pi) + \frac{1}{n \pi} + \frac{1}{n \pi} \cos(n \pi)
\]

$B_n = \frac{2}{n \pi} (1 - \cos(n \pi))$ Sin terms only
Example: Square wave

Therefore, Trigonometric Fourier series is,

\[x(t) = \sum_{n=1}^{\infty} \frac{2}{n\pi} (1 - \cos(n\pi)) \sin(n\pi) \]

Expanding the terms gives,

\[
x(t) = \frac{4}{\pi} \sin(\pi t) \quad \text{fundamental} \\
+ 0 \quad \text{(second harmonic)} \\
+ \frac{4}{3\pi} \sin(3\pi t) \quad \text{(third harmonic)} \\
+ 0 \quad \text{(fourth harmonic)} \\
+ \frac{4}{5\pi} \sin(5\pi t) \quad \text{(fifth harmonic)} \\
+ \text{etc}
\]

- Only odd harmonics;
- In proportion 1, 1/3, 1/5, 1/7,…
- Higher harmonics contribute less;
- Therefore, converges

Complex Fourier Series (CFS)

- Also called Exponential Fourier series
- FS as a Complex phasor summation

- As it uses Euler’s relation

\[
A \exp(jw_0t) = A \cos(w_0t) + jA \sin(w_0t)
\]

which implies,

\[
\cos(nw_0t) = \frac{\exp(jnw_0t) + \exp(-jnw_0t)}{2}
\]

\[
\sin(nw_0t) = \frac{\exp(jnw_0t) - \exp(-jnw_0t)}{2j}
\]

\[
x(t) = \sum_{n=-\infty}^{\infty} X_n \exp(jnw_0t)
\]

Where \(X_n\) are the CFS coefficients
Complex Phasor Summation

Complex Fourier Coefficients

- Again, X_n calculated from $x(t)$
- Only one set of coefficients, X_n
 - but, generally they are complex

$$X_n = \frac{1}{T} \int_{-T/2}^{+T/2} x(t) \exp(-jnw_0 t) dt$$

Remember: fundamental $w_0 = 2\pi/T$!
Relationships

- There is a simple relationship between
 - trigonometrical and
 - complex Fourier coefficients,

\[
X_0 = \frac{A_0}{2}
\]

\[
X_n = \begin{cases}
A_n - jB_n, & n > 0; \\
\frac{2}{A_n + jB_n}, & n < 0.
\end{cases}
\]

Constrained to be symmetrical, i.e., complex conjugate

\[X_{-n} = X_n^*\]

Therefore, can calculate simplest form and convert

Example: Complex FS

- Consider the pulse train signal

\[
x(t) = \begin{cases}
A, & 0 \leq |t| \leq \frac{T}{2}; \\
0, & \frac{T}{2} < |t| \leq T; \\
x(t+T).
\end{cases}
\]

- Has complex Fourier series:

\[
X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp(-jn\omega_0 t) dt = \frac{1}{T} \int_{-T/2}^{T/2} A \exp(-jn\omega_0 t) dt
\]

\[
= \frac{-A \tau}{j n \omega_0 T \tau} \left[\exp\left(-jn\omega_0 \frac{\tau}{2}\right) - \exp\left(jn\omega_0 \frac{\tau}{2}\right) \right]
\]

Note: \(n \) is the ind. variable
Example: Complex FS

• Which using Euler’s identity reduces to:

\[X_n = \frac{A \tau \sin(nw_0 \tau/2)}{T} = \frac{A \tau}{T} \sin(nw_0 \tau/2) \]

\[w_0 = \frac{2\pi}{T} \]

Note: letting \(\theta = \frac{n\omega_0 \tau}{2} \)

\[\exp(-j\theta) - \exp(j\theta) \]

\[= \cos(-\theta) + j \sin(-\theta) - (\cos(\theta) + j \sin(\theta)) \]

\[= \cos(\theta) - j \sin(\theta) - \cos(\theta) - j \sin(\theta) = -2j \sin(\theta) \]

Note: complex conj symmetry

\[\pm \pi \rightarrow \text{ve real value} \]

Note: complex conj symmetry
Duty Cycle $\tau/T = 1/4$

Amplitude, $|X_n|$

Phase, $\angle(X_n)$

Duty Cycle $\tau/T = 1/8$

Amplitude, $|X_n|$

Phase, $\angle(X_n)$

Coefficients getting smaller!

4^{th}, 8^{th}, 12^{th}, $\ldots = 0$

8^{th}, 16^{th}, $\ldots = 0$
Complex FS of Pulse Train

- Amplitude spectrum has ‘sinc’ (‘sa’) envelope
 - Amplitude reduces as duty cycle decreases
 - DC coefficient X0 (n=0) present
 - compare to first example
 - Duty cycle τ/T: XM$\tau/T = 0$ (M = 1,2,3,...)
 - Even symmetry: $|X-n| = |X_n|
 - For real (not complex) signals (all we shall consider)
 - Often only plot positive frequency, e.g., Matlab

- Phase spectrum
 - Odd symmetry: $\angle X-n = -\angle X_n$

Complex conjugate (Hermitian) symmetry is general property for real $x(t)$
Interpretation of Fourier Series

- Represents periodic signals (T = 2π/w₀)
 - as sum of cosine waves: “cosine series”
 - at harmonic frequencies 0, w₀, 2w₀, 3w₀, …
 - |Xₙ| is half amplitude of nth harmonic
 - ∠Xₙ is phase shift of nth harmonic
- Distribution with harmonic number of
 - both amplitude & phase
 - called a frequency spectrum (discrete)

\[x(t) = X₀ + \sum_{n=1}^{\infty} 2 |Xₙ| \cos(nw₀t + ∠Xₙ) \]

i.e., Harmonics only

Orthogonal Expansions

- Trigonometrical and Complex FS both
 - Orthogonal expansions
- Because harmonically related
 - sines, cosines, and complex phasors are all orthogonal
 - Product of f₁(t) & f₂(t) integrates to zero over 1 period

\[\frac{1}{T} \int_{-T/2}^{T/2} \exp(jnw₀t) \exp^*(jmw₀t)dt = \begin{cases} 1, & \text{if } m = n; \\ 0, & \text{if } m \neq n. \end{cases} \]

This means we can calculate each Xₙ independently
(instead of solving n simultaneous equations)
Example: Calculate Power in $x(t)$

A simple periodic signal $x(t)$ where:

$$x(t) = a_1 \sin(\omega_0 t) + a_2 \sin(2\omega_0 t)$$

The power:

$$P = \frac{1}{T} \int_0^T x^2(t) \, dt$$

$$= \frac{1}{T} \int_0^T a_1^2 \sin^2(\omega_0 t) \, dt + \frac{1}{T} \int_0^T a_2^2 \sin^2(2\omega_0 t) \, dt \quad \text{Orthogonal} \rightarrow 0$$

$$= \frac{1}{T} \int_0^T \frac{1}{2} a_1^2 \sin^2(\omega_0 t) \, dt + \frac{1}{T} \int_0^T \frac{1}{2} a_2^2 \sin^2(2\omega_0 t) \, dt$$

$$= \frac{a_1^2}{2} + \frac{a_2^2}{2}$$

Total = sum of power in 2 sine waves

Parseval’s Theorem

- Direct consequence of orthogonality
- Calculate power of a signal either
 - in time domain, i.e., from $x(t)$, or
 - in frequency domain, i.e., from X_n

$$P = \frac{1}{T} \int_0^T x^2(t) \, dt = \sum_{n=-\infty}^{\infty} |X_n|^2$$

Continuous & periodic

Discrete
Duty Cycle $\tau/T = 1/2$

Normalised Amplitude, $|X_n|*T/\tau$

Angular frequency (w)

Phase, angle(X_n)

Angular frequency (w)

Note change of axes!
Duty Cycle \(\frac{\tau}{T} = 1/8 \)

Normalised Amplitude, \(\frac{|X_n| T}{\tau} \)

Angular frequency (\(w \))

Phase, \(\angle(X_n) \)

Angular frequency (\(w \))
Fourier Transform

- Fourier series
 - Only applicable to periodic signals
- Real world signals are rarely periodic
- Develop Fourier transform by
 - Examining a periodic signal
 - Extending the period to infinity

Fourier Transform

- Problem: as $T \to \infty$, $X_n \to 0$
 - i.e., Fourier coefficients vanish!
- Solution: re-define coefficients
 - $X'_n = T \times X_n$
- As $T \to \infty$
 - (harmonic frequency) $nw_0 \to w$ (continuous freq.)
 - (discrete spectrum) $X'_n \to X(w)$ (continuous spect.)
 - w_0 (fundamental freq.) reduces $\to dw$ (differential)
 - Summation becomes integration
Fourier Transform

Note missing 1/T

Modified Fourier series

\[X'_n = \int_{-T/2}^{+T/2} x(t) \exp(-jnw_0t) dt \]

\[X(w) = \lim_{T \to \infty} \int_{-T/2}^{+T/2} x(t) \exp(-jnw_0t) dt \]

Note: as \(T \to \infty \)

\[X(w) = \int_{-\infty}^{\infty} x(t) \exp(-jwt) dt \]

\[x(t) = \lim_{T \to \infty} \sum_{n=-\infty}^{\infty} X'_n \exp(jnw_0t) \frac{W_0}{2\pi} \]

Inverse Fourier series

\[x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(w) \exp(jwt) dw \]

Inverse Fourier transform

\[x(t) = F^{-1}\{X(w)\} \]

As a example of the evaluation of the Fourier transform, consider the finite energy signal \(x(t) \) illustrated in Figure 1.8.

\[X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt \]

\[= \int_{-\pi/2}^{\pi/2} x(t) \exp(-j\omega t) dt \]

\[= \frac{-A}{j\omega} \left[\exp\left(\frac{-j\omega \tau}{2}\right) - \exp\left(\frac{j\omega \tau}{2}\right) \right] \]

Using Euler’s relation

\[\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2j} \]

Note the similarity to Previous FS examples

\[\sin(\omega \tau/2) \]

\[= A\tau \sin(\omega \tau/2) \]

\[= A\tau \text{sinc}(\omega \tau/2) \]

Figure 1.8 Fourier transform of a rectangular pulse.
Summary!