The University
Of Queensland
A U S TRALIA
This paper must not be removed from the venue

School of Information Technology and Electrical Engineering Quiz

METR4202: ROBOTICS \& AUTOMATION

August 27,2018

First Name: \qquad Last Name: \qquad

Student Number: \qquad

Examination Duration:	45 minutes
Reading Time:	10 minutes

Exam Conditions:

This is a Closed Book Quiz

Electronic Materials Permitted In The Exam Venue:

- Calculator - Allowed
- One A4 (Single-Sided) Formula Sheet - Allowed

Instructions To Students:

- Please be sure to place your name and number on ALL pages
- Please answer ALL questions.
- \Rightarrow ALL Answers MUST Be Justified \hookleftarrow (answers alone are not sufficient)

Thank you! $)$

Total

Page $\mathbf{1}$ of 12

METR4202: Robotics \& Automation

Quiz

This quiz consists of Short Answer, Worked Problems, and Multiple Choice. Please Answer All Questions below on the quiz paper. Answers must be neat and clear. All answers (except for multiple choice) must provide a brief justification. You may use the back of each sheet as scratch paper if needed. The total quiz is worth 100 points.

1. Putting Transformations Matrices into Perspective
[5 Points]
To get started, let's consider the humble process of transforming frames in 3D-space using a homogeneous transformation matrix.

A transformation matrix naturally partitions into four (4) submatrices. Assuming Rigid Body, Euclidian Space, please specify the main sub-components and their matrix dimensions? (i.e., for the Transformation Matrix for a Euclidian Group)

2. Trigonometry Comes From Linear Algebra

To get started, let's consider two rotation matrices, $[\boldsymbol{A}]$ and $[\boldsymbol{B}]$, that are about the same origin and both rotate a vector about a 3D frame's \boldsymbol{z}-axis by the same angle $\boldsymbol{\theta}$.
(a) What are $[\boldsymbol{A}]$ and $[\boldsymbol{B}]$?
(i.e., please expand the matrices, and give their contents/elements inside)?
(b) It intuits that the composite rotation should be $2 \boldsymbol{\theta}$.

Please show that $[\boldsymbol{A}][\boldsymbol{B}]$ gives a rotation of $2 \boldsymbol{\theta}$.
3. Easy as ${ }^{0} 1 \ldots{ }^{1} 2 \ldots{ }^{2} 3$!
[40 Points]
Consider a planar 3 R robot arm with lengths l_{1}, l_{2} and l_{3} and frames $\{0\},\{1\},\{2\}$ and $\{3\}$ at the joints as shown below in Figure 1. The angles between the frames are given by θ_{1}, θ_{2} and θ_{3} [i.e. with $\theta_{1}={ }^{\mathbf{0}} \theta_{1}, \theta_{2}={ }^{1} \theta_{2}, \theta_{3}={ }^{2} \theta_{3}$].

Figure 1: A 3R manipulator for cleaning a mirror
It has the following transformation matrices between frames:

$$
{ }^{0} \mathbf{T}_{1}=\begin{array}{cccc}
c \theta_{1} & -s \theta_{1} & 0 & l_{1} c \theta_{1} \\
s \theta_{1} & c \theta_{1} & 0 & l_{1} s \theta_{1} \\
0 & 0 & 1 & 0
\end{array},{ }^{1} \mathbf{T}_{2}=\begin{array}{ccccccc}
c \theta_{2} & -s \theta_{2} & 0 & l_{2} c \theta_{2} \\
s \theta_{2} & c \theta_{2} & 0 & l_{2} s \theta_{2} \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}{ }^{2} \mathbf{T}_{3}=\begin{array}{cccc}
c \theta_{3} & -s \theta_{3} & 0 & l_{3} c \theta_{3} \\
s \theta_{3} & c \theta_{3} & 0 & l_{3} s \theta_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$

(a) Spaces

What are the configuration space and workspace for this robot arm?
(b) Transformation

What is the overall Transformation Matrix $\left({ }^{0} \boldsymbol{T}_{\mathbf{3}}\right)$ of the tip relative to the base (at $\{0\}$)?
(c) Looking back on this

What is the Transformation Matrix (${ }^{3} \boldsymbol{T}_{\mathbf{0}}$) of the base relative to the tip? [hint: if you are running short of time, please just outline the solution relative to ${ }^{0} T_{3}$]
(d) Forward kinematics

From this, what is the Forward Kinematics for this arm for any general three input angles $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$?
(e) Inverse kinematics

What is the Inverse Kinematics for this problem for a general end-effector pose given by $p_{e}=\left(x_{e}, y_{e}, \phi\right)$?
(f) More than one way to get there

How many real solutions will the Inverse Kinematics (from part (e)) have?
Will it always have this many solutions for all points p_{e} ? If so, why? If not, why not? And, in which case, what is a test for finding the number of real solutions?
(g) A new line of reflection [EXTRA CREDIT]

As noted, there is a mirror located to the right at a distance of $\mathbf{8 \lambda} \mathrm{cm}$ away from the base (frame $\{0\}$) of the robot.

If the robot lengths are $\left(l_{1}, l_{2}, l_{3}\right)=(4 \lambda, 2 \lambda, 3 \lambda)$ respectively, then please give an expression for $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ such that the arm is in contact with the mirror. [i.e. if the arm were in contact with the mirror, what is the manifold of solutions?]
4. Robots in Wonderland....

Hatter, the green tea robot, is going to have a tea party! To prevent a spill (motion), for one does not want to upset the Queen (of Hearts), it needs to place the teapot on a table with exact force.

Figure 2: A manipulator needs to place the teapot on the table (crosshatch)
[PS. So as to serve tea to March Hare and Dormouse at 6:00pm ©)]
As shown in Figure 2, please assume:

- The first link, L_{1}, has mass m_{1} and length 20 cm .
- The second link, L_{2}, has mass m_{2} and length 15 cm .
- The teapot has mass $m_{t}=m_{1}+m_{2}$ (m_{t} is not empty) and may be considered a vertically centred $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ box (i.e. from the end of L_{2} to the teapot's bottom is 5 cm).
- The table is 30 cm below the base of the robot arm (i.e. $y_{\text {table }}=-30 \mathrm{~cm}$ in frame $\{0\}$).
(a) Forward kinematics - Assuming the teapot angle can be controlled, what is the forward kinematics for this arm? [Hint: see also Question 3, part (d)]
(b) What is the Jacobian for this robot arm?
(c) If the teapot has to be placed down flat (at a pose of 0° relative to frame $\{0\}$) with precisely $\mathbf{1 0} \mathbf{N}$ force in the vertical (\boldsymbol{y}-axis) direction with no force in the horizontal (\boldsymbol{x}-axis) direction. [1] What is the reaction force on the teapot?
[2] And, what is the resulting (additional) reaction torques of the contact on the robot joints?

5. Truth in Robotics!

Please state if the following statements are generally TRUE (T) or FALSE (F)
(Kindly circle the answer © T or ${ }^{\circledR}$, a brief justification may be optionally added below)
(a) If $A \in S E(n)$, then $\operatorname{det} A=+1$
(b) A 3R3P manipulator must be redundant in 3D space
(c) $R_{x}\left(\frac{\pi}{2}\right) R_{y}(\theta)\left(R_{x}\left(\frac{\pi}{2}\right)^{T}\right)=R_{z}(\theta)$
(d) All elements of a Jacobian have uniform units of measure
(e) For a robot arm with redundancies, $\boldsymbol{\operatorname { d e t }}(J)=\mathbf{0}$ will give the singular poses.

