

This paper must not be removed from the venue

School of Information Technology and Electrical Engineering Quiz

METR4202: ROBOTICS & AUTOMATION

August 27, 2018

First Name:	Last Name:		
Student Number:			
Examination Duration:	45 minutes	Q	Mark
Reading Time:	10 minutes	1	
Exam Conditions: This is a Closed Book Quiz	2		
 Electronic Materials Perm Calculator – Allower One A4 (Single-Side) 	3		
Instructions To Students: • Please be sure to p • Please answer ΔI	4		
 → <u>ALL</u> Answers M (answers alone are Thank you! ⁽¹⁾ 	utestions. UST Be Justified ⇔ not sufficient)	5	

Total ____

METR4202: Robotics & Automation

Quiz

This quiz consists of Short Answer, Worked Problems, and Multiple Choice. **Please Answer** <u>All</u> **Questions** below on the quiz paper. Answers must be neat and clear. All answers (except for multiple choice) **must provide a brief justification**. You may use the back of each sheet as scratch paper if needed. The total quiz is worth 100 points.

1. Putting Transformations Matrices into Perspective

[5 Points]

To get started, let's consider the humble process of transforming frames in 3D-space using a homogeneous transformation matrix.

A transformation matrix naturally partitions into four (4) submatrices. Assuming **Rigid Body, Euclidian Space**, please specify the main **sub-components** *and* **their matrix dimensions**? (i.e., for the Transformation Matrix for a Euclidian Group)

2. Trigonometry Comes From Linear Algebra

To get started, let's consider two rotation matrices, [A] and [B], that are about the same origin and both rotate a vector about a 3D frame's *z*-axis by the same angle θ .

(a) What are [**A**] and [**B**] ?

(i.e., please expand the matrices, and give their contents/elements inside)?

(b) It intuits that the composite rotation should be 2θ.Please show that [A][B] gives a rotation of 2θ.

[15 Points]

3. Easy as ${}^{0}1... {}^{1}2... {}^{2}3!$

Consider a planar 3R robot arm with lengths l_1 , l_2 and l_3 and frames {0}, {1}, {2} and {3} at the joints as shown below in Figure 1. The angles between the frames are given by θ_1 , θ_2 and θ_3 [i.e. with $\theta_1 = {}^{0}\theta_1$, $\theta_2 = {}^{1}\theta_2$, $\theta_3 = {}^{2}\theta_3$].

It has the following transformation matrices between frames:

	$c\theta_1$	$-s\theta_1$	0	$l_1 c \theta_1$		$c\theta_2$	$-s\theta_2$	0	$l_2 c \theta_2$		$c\theta_3$	$-s\theta_3$	0	$l_3 c \theta_3$
${}^{0}\mathbf{T}_{1} =$	$s\theta_1$	$c\theta_1$	0	$l_1 s \theta_1$	' $^{1}T_{2} =$	$s\theta_2$	$c\theta_2$	0	$l_2 s \theta_2$	$^{2}T_{3} =$	$s\theta_3$	$c\theta_3$	0	$l_3 s \theta_3$
	0	0	1	0		0	0	1	0		0	0	1	0
	0	0	0	1		0	0	0	1		0	0	0	1

(a) Spaces

What are the **configuration space** and **workspace** for this robot arm?

(b) *Transformation*

What is the overall **Transformation Matrix** $({}^{0}T_{3})$ of the tip relative to the base (at $\{0\}$)?

Question 3 – Leaf 2

(c) Looking back on this

What is the **Transformation Matrix** $({}^{3}T_{0})$ of the base relative to the tip? [hint: if you are running short of time, please just outline the solution relative to ${}^{0}T_{3}$]

(d) Forward kinematics

From this, what is the **Forward Kinematics** for this arm for any general three input angles $(\theta_1, \theta_2, \theta_3)$?

Continued Overleaf...

(e) Inverse kinematics

What is the **Inverse Kinematics** for this problem for a general end-effector pose given by $p_e = (x_e, y_e, \phi)$?

(f) More than one way to get there

How many real solutions will the Inverse Kinematics (from part (e)) have? Will it always have this many solutions for all points p_e ? If so, why? If not, why not? And, in which case, what is a test for finding the number of real solutions?

Continued Overleaf...

Question 3 – Leaf 4

(g) A new line of reflection [EXTRA CREDIT]

As noted, there is a mirror located to the right at a distance of 8λ cm away from the base (frame {0}) of the robot.

If the robot lengths are $(l_1, l_2, l_3) = (4\lambda, 2\lambda, 3\lambda)$ respectively, then please give an expression for $(\theta_1, \theta_2, \theta_3)$ such that the arm is in contact with the mirror. [i.e. if the arm were in contact with the mirror, what is the manifold of solutions?]

4. Robots in Wonderland....

Hatter, the green tea robot, is going to have a tea party! To prevent a spill (motion), for one does not want to upset the Queen (of Hearts), it needs to place the teapot on a table with exact force.

Figure 2: A manipulator needs to place the teapot on the table (crosshatch) [PS. So as to serve tea to March Hare and Dormouse at 6:00pm ⓒ]

As shown in Figure 2, please assume:

- The first link, L_1 , has mass m_1 and length 20 cm.
- The second link, L_2 , has mass m_2 and length 15 cm.
- The teapot has mass $m_t = m_1 + m_2$ (m_t is not empty) and may be considered a vertically centred 10 cm × 10 cm box (i.e. from the end of L_2 to the teapot's bottom is 5 cm).
- The table is 30 cm below the base of the robot arm (i.e. $y_{table} = -30 \ cm$ in frame {0}).
- (a) *Forward kinematics* Assuming the teapot angle can be controlled, what is the forward kinematics for this arm? [Hint: see also Question 3, part (d)]

Question 4 – Leaf 2

(b) What is the Jacobian for this robot arm?

Continued Overleaf...

Question 4 – Leaf 3

- (c) If the teapot has to be placed down **flat** (at a pose of 0° relative to frame {0}) with precisely 10 N force in the vertical (*y-axis*) direction with no force in the horizontal (*x-axis*) direction.
 - [1] What is the **reaction force** on the teapot?
 - [2] And, what is the resulting (additional) reaction torques of the contact on the robot joints?

5. Truth in Robotics!

Please state if the following statements are generally **TRUE** (**T**) or **FALSE** (**F**) (Kindly circle the answer **①** or **④**, a brief justification may be *optionally* added below)

(a) If
$$A \in SE(n)$$
, then $det A = +1$ [T | F]

(b) A 3R3P manipulator must be redundant in 3D space [T | F]

(c)
$$R_x\left(\frac{\pi}{2}\right)R_y(\theta)\left(R_x\left(\frac{\pi}{2}\right)^T\right) = R_z(\theta)$$
 [**T** | **F**]

((L	All elements of a Jacobian have uniform units of measure	T	F	1
(u)	An elements of a Jacobian nave uniform units of measure		Г	

(e) For a robot arm with redundancies,
$$det(J) = 0$$
 will give the singular poses. [T | F]