METR4202 -- Robotics
 Tutorial 4 - Week 4: Solutions

Solutions updated by Chris, Jeevan, Russell. Thank you!

Reading

Please read/review chapter $8 \& 9$ of Robotics, Vision and Control.

Review: Forward Kinematics of a two-link planar manipulator

$$
\begin{aligned}
& x=a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& y=a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Questions

Figure 1: Two-link planar manipulator
1.
a.) Using the two-link planar manipulator from tutorial 3, calculate the jacobian needed to relate the joint velocities to the tool-point velocities.

$$
J=\left[\begin{array}{cc}
-l_{1} \sin \left(\theta_{1}\right)-l_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) & l_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]
$$

b.) Similarly, calculate the inverse jacobian needed to relate the tool-point velocities to the joint velocities.

$$
\left[\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\frac{1}{L_{1} L_{2} s_{2}}\left[\begin{array}{cc}
L_{2} \mathrm{c}_{12} & L_{2} \mathrm{~s}_{12} \\
-L_{1} \mathrm{c}_{1}-L_{2} \mathrm{c}_{12} & -L_{1} \mathrm{~s}_{1}-L_{2} \mathrm{~s}_{12}
\end{array}\right]\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right.
$$

2.

a.) Using the Jacobian found in Q1a, calculate the tool point linear velocity if joint 1 is rotating at $1 \mathrm{rad} / \mathrm{s}$ and joint 2 is rotating at $3 \mathrm{rad} / \mathrm{s}\left(\mathrm{a}_{1}=2, \mathrm{a}_{2}=3 \theta_{1}=167.028^{\circ}, \theta_{2}\right.$ $=-156.44^{\circ}$).

$$
\begin{gathered}
\stackrel{\rightharpoonup}{v}=J \overrightarrow{\dot{q}} \\
{\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
-l_{1} \sin \left(\theta_{1}\right)-l_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) & l_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
\dot{\theta_{1}} \\
\dot{\theta}_{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
-1.0000 & -0.5512 \\
1.0000 & 2.9489
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]} \\
{\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
-2.654 \\
9.847
\end{array}\right] \mathrm{m} / \mathrm{s}}
\end{gathered}
$$

b.) Calculate the resulting joint torques τ, given a force $F=(30,-20)$ is applied to the end effector tool point.

$$
\begin{gathered}
\tau=J^{T} F \\
{\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]=\left[\begin{array}{cc}
-l_{1} \sin \left(\theta_{1}\right)-l_{2} \sin \left(\theta_{1}+\theta_{2}\right) & l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
-l_{2} \sin \left(\theta_{1}+\theta_{2}\right) & l_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]=\left[\begin{array}{ll}
-1.0000 & 1.0000 \\
-0.5512 & 2.9489
\end{array}\right]\left[\begin{array}{c}
30 \\
-20
\end{array}\right]} \\
{\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]=\left[\begin{array}{c}
-50.0 \\
-75.1
\end{array}\right] \mathrm{Nm}}
\end{gathered}
$$

3. (See also p. 209 of Spong, Robot Modeling and Control [p. 17 of attached PDF] or Ex 13.13 (p.637) of LaValle, Planning Algorithms [p. 772 of Ch. 13 of the online PDF], or p. 110 of Asada and Slotine, Robot Analysis and Control)

Figure 2: Two-link revolute joint arm.
a.) With respect to figure 2 above, derive the equations of motion for the two-degree-offreedom robot arm using the Lagrangian method.

$$
\tau_{i}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{l}}\right)-\frac{\partial L}{\partial \theta_{i}}
$$

Step 1: Calculate the velocities at the center of mass of link 2.

$$
\begin{gathered}
x_{D}=l_{1} C_{1}+0.5 l_{2} C_{12}=>\dot{D_{D}}=-l_{1} S_{1} \dot{\theta_{1}}-0.5 l_{2} S_{12}\left(\dot{\theta_{1}}+\dot{\theta_{2}}\right) \\
y_{d}=l_{1} S_{1}+0.5 l_{2} S_{12} \Rightarrow>\dot{y}_{d}=l_{1} C_{1} \dot{\theta}_{1}+0.5 l_{2} C_{12}\left(\dot{\theta_{1}}+\dot{\theta_{2}}\right)
\end{gathered}
$$

Total Velocity :

$$
\begin{gathered}
v_{D}{ }^{2}=\dot{x_{D}^{2}}+\dot{y}_{D}^{2} \\
=\dot{\theta_{1}}\left(l_{1}^{2}+0.25 l_{2}^{2}+l_{1} l_{2} C_{2}\right)+\dot{\theta}_{2}^{2}\left(0.25 l_{2}^{2}\right)+\dot{\theta}_{1} \dot{\theta}_{2}\left(0.5 l_{2}^{2}+l_{1} l_{2} C_{2}\right)
\end{gathered}
$$

Step 2: Calculate total Kinetic energy.

$$
=\left[\begin{array}{c}
K=K_{1}+K_{2} \\
{\left[\frac{1}{2} I_{A} \dot{\theta}_{1}^{2}\right]+\left[\frac{1}{2} I_{D}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+\frac{1}{2} m_{2} v_{d}^{2}\right]}
\end{array}\right.
$$

Substitute the total velocity into the Kinetic energy.

$$
\begin{gathered}
K=\dot{\theta}^{2}\left(\frac{1}{6} m_{1} l_{1}^{2}+\frac{1}{6} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right)+\dot{\theta}_{2}^{2}\left(\frac{1}{6} m_{2} ; l_{2}^{2}\right) \\
+\dot{\theta}_{1} \dot{\theta}_{2}\left(\frac{1}{3} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right)
\end{gathered}
$$

Step 3: Calculate the total Potential energy of the system.

$$
P=\frac{m_{1} g l_{1}}{2} S_{1}+m_{2} g\left(l_{1} S_{1}+\frac{l_{2}}{2} S_{12}\right)
$$

The Lagrangian for the two-link robot arm is:

$$
\begin{aligned}
L=K-P & \\
& =\dot{\theta}^{2}\left(\frac{1}{6} m_{1} l_{1}^{2}+\frac{1}{6} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right)+\dot{\theta}_{2}^{2}\left(\frac{1}{6} m_{2} ; l_{2}^{2}\right) \\
& +\dot{\theta}_{1} \dot{\theta}_{2}\left(\frac{1}{3} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right)-\frac{m_{1} g l_{1}}{2} S_{1}-m_{2} g\left(l_{1} S_{1}+\frac{l_{2}}{2} S_{12}\right)
\end{aligned}
$$

Step 4: Calculate the derivatives of the Lagrangian to determine the torque equations for the two-link robot arm: Recall Chain rule expansion:

$$
\begin{aligned}
& \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& \frac{d}{d t}=\frac{\partial}{\partial \theta_{2}} \frac{d \theta_{2}}{d t}+\frac{\partial}{\partial \dot{\theta_{1}}} \frac{d \dot{\theta}_{1}}{d t} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{1}}\right) \\
& =\left(\frac{1}{3} m_{1} l_{1}^{2}+m_{2} l_{1}^{2}+\frac{1}{3} m_{2} l_{2}^{2}+m_{2} l_{1} l_{2} C_{2}\right) \ddot{\theta_{1}} \\
& +\left(\frac{1}{3} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right) \ddot{\theta}_{2}-\left(m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}-\left(\frac{1}{2} m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{2}^{2} \\
& \frac{\partial L}{\partial \theta_{1}}=\left(\frac{1}{2} m_{1}+m_{2}\right) g l_{1} C_{1}+\frac{1}{2} m_{2} g l_{2} C_{12} \\
& \tau_{1}=\left(\frac{1}{3} m_{1} l_{1}^{2}+m_{2} l_{1}^{2}+\frac{1}{3} m_{2} l_{2}^{2}+m_{2} l_{1} l_{2} C_{2}\right) \ddot{\theta}_{1}+\left(\frac{1}{3} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right) \ddot{\theta}_{2}- \\
& \left(m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}-\left(\frac{1}{2} m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{2}^{2}+\left(\frac{1}{2} m_{1}+m_{2}\right) g l_{1} C_{1}+\frac{1}{2} m_{2} g l_{2} C_{12} \\
& \frac{d}{d t}=\frac{\partial}{\partial \theta_{2}} \frac{d \theta_{2}}{d t}+\frac{\partial}{\partial \dot{\theta_{2}}} \frac{d \dot{\theta}_{2}}{d t} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{2}}\right) \\
& =\left(\frac{1}{3} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right) \ddot{\theta}_{1}+\left(\frac{1}{3} m_{2} l_{2}^{2}\right) \ddot{\theta}_{2}-\left(\frac{1}{2} m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{1}^{2} \\
& -\left(m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2} \\
& \frac{\partial L}{\partial \theta_{2}}=\left(m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2}+\frac{1}{2} m_{2} g l_{2} C_{12} \\
& \tau_{2}=\left(\frac{1}{3} m_{2} l_{2}^{2}+\frac{1}{2} m_{2} l_{1} l_{2} C_{2}\right) \ddot{\theta}_{1}+\left(\frac{1}{3} m_{2} l_{2}^{2}\right) \ddot{\theta}_{2}-\left(\frac{1}{2} m_{2} l_{1} l_{2} S_{2}\right) \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} g l_{2} C_{12}
\end{aligned}
$$

Challenge Question:

Figure 3: Elbow Manipulator
a.) List the DH parameters for this arm, clearly indication which parameters are the joint variables $\left(L_{1}=3 \mathrm{~m} . \mathrm{L}_{2}=2 \mathrm{~m}, \mathrm{~L}_{3}=1 \mathrm{~m}\right)$.
b.) Find the inverse Kinematic equations for the arm to derive the joint values from tool point position.
c.) Given that the tool point is at $(1.0 \mathrm{~m}, 0.2 \mathrm{~m}, 0.5 \mathrm{~m})^{\mathrm{T}}$, use the inverse kinematic equations to find the joint values.
d.) Find the manipulator Jacobian, J, that relates the joint velocities to the tool point velocity.

