METR4202 -- Robotics Tutorial 3 - Week 3: Solutions

The objective of this tutorial is to explore homogenous transformations. The MATLAB robotics toolbox developed by Peter Corke might be a useful aid ${ }^{1}$

Reading

Please read/review Please read/review chapter 7 of Robotics, Vision and Control. (http://goo.gl/T3DJ0)

Review

Useful commands:
Transl,trotx, troty, trotz, rotx, roty, rotz, tr2eul, DHFactor

Familiarise yourself with the link class

Questions

1. For the robot shown in the following figure, find the table of DH parameters according to "Standard" DH conventions.
(note: you are allowed to move the initial frame to fit convention(s))

Legend:

Answers:

Link	FromFrame	${ }^{\mathrm{To}}$ Frame	θ_{i}	d_{i}	a_{i}	α_{i}
1	0	1	$\theta 1^{*}$	4	1	-90°
2	1	2	$\theta 2^{*}$	0	2	90°
3	2	3	$\theta 3^{*}$	0	0	0

\rightarrow Note that the position of the end effector (the gripper) may be viewed as a position vector ($\mathbf{P}^{\text {end_effector }}$) in Frame 3.

[^0]

Figure 1: Two-link Planar Robot

a.) Determine the joint angles of the two-link planar arm.

The joint space of the robot is $\left(\theta_{1}, \theta_{2}\right)$.
The forward kinematics may be solved directly using the vector-loop method or somewhat more mechanically using the DH convention (see slides 24 and 42 of Lecture 3). This gives:
$\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right)=\left(a_{1} c \theta_{1}+a_{2} c \theta_{12}, a_{1} s \theta_{1}+a_{2} s \theta_{12}\right)$
The inverse kinematics involves solving the above simultaneous equation for θ_{1} and θ_{2}. A geometric way of solving this is to observe that the distance from $\{0\}$ to $\{2\}$ is independent of θ_{1}. Thus, sum of squares gives:
$p_{x}^{2}+p_{y}^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} c \theta_{2}$
$\theta_{2}=\arccos \left(\frac{p_{x}^{2}+p_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)$
If θ^{*} is an answer to the above, the, in general, $-\theta^{*}$ will also be an answer. This is corresponds to the "elbow up" and "elbow down" configurations.
Substituting this back into the kinematic equations gives:

$$
\begin{aligned}
& p_{x}=\left(a_{1}+a_{2} c \theta_{2}\right) c \theta_{1}-\left(a_{2} s \theta_{2}\right) s \theta_{1}, p_{y}=\left(a_{2} s \theta_{2}\right) c \theta_{1}+\left(a_{1}+a_{2} c \theta_{2}\right) s \theta_{1} \\
& c \theta_{1}=\frac{p_{x}\left(a_{1}+a_{2} c \theta_{2}\right)+p_{y}\left(a_{2} s \theta_{2}\right)}{a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} c \theta_{2}} \\
& s \theta_{1}=\frac{-p_{x}\left(a_{2} s \theta_{2}\right)+p_{y}\left(a_{1}+a_{2} c \theta_{2}\right)}{a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} c \theta_{2}}
\end{aligned}
$$

$\theta_{1}=\operatorname{Atan} 2\left(\mathrm{~s} \theta_{1}, \mathrm{c} \theta_{1}\right)$
If a1 $=2$ and $\mathrm{a} 2=3$ what are the joint angles corresponding to an end effector position of $(x, y)=(1,1)$.

$$
\theta_{1}=167.028^{\circ}, \theta_{2}=-156.44^{\circ} \quad \text { (Elbow down) }
$$

Or $\theta_{1}=-77.028^{\circ}, \theta_{2}=156.44^{\circ} \quad$ (Elbow up)

To verify using the Robotics Toolbox:

```
L(1) = Link([ 0 0 2 0], 'standard')
L(2) = Link([ 0 0 3 0], 'standard')
twolink = SerialLink(L, 'name', 'two link')
T=rpy2tr(0,0,0); T(1:2, 4)=[1 1]
Qsol=twolink.ikine(T, zeros(1,2), [1 1 0 0 0 0])
Qsol =
2.9152 -2.7305
```


[^0]: ${ }^{1}$ http://petercorke.com/Robotics_Toolbox.html

